Free Access
Issue |
ESAIM: COCV
Volume 10, Number 1, January 2004
|
|
---|---|---|
Page(s) | 142 - 167 | |
DOI | https://doi.org/10.1051/cocv:2003040 | |
Published online | 15 February 2004 |
- F. Alouges, A new algorithm for computing liquid crystal stable configurations: the harmonic mapping case. SIAM J. Numer. Anal. 34 (1997) 1708–1726. [Google Scholar]
- F. Alouges and B.D. Coleman, Numerical bifurcation of equilibria of nematic crystals between non-co-axial cylinders. Math. Models Methods Appl. Sci. 11 (2001) 459–473. [Google Scholar]
- D. Braess, Finite elements, in Theory, fast solvers, and applications in solid mechanics. Translated from the 1992 German edition by Larry L. Schumaker. Cambridge University Press, Cambridge, 2nd edn. (2001). [Google Scholar]
- H. Brézis, Analyse fonctionnelle. Masson (1996). [Google Scholar]
- H. Brézis and J.-M. Coron, Large solutions for harmonic maps in two dimensions. Comm. Math. Phys. 92 (1983) 203–215. [Google Scholar]
- K.-C. Chang, W.-Y. Ding and R. Ye, Finite-time blow up of the heat flow of harmonic maps from surfaces. J. Differ. Geom. 36 (1992) 507–515. [Google Scholar]
- P.G. Ciarlet, Introduction à l'analyse numérique matricielle et à l'optimisation. Masson (1988). [Google Scholar]
- P.-G. De Gennes and J. Prost, The physics of liquid crystals. Clarendon Press, Oxford (1993). [Google Scholar]
- R. Fletcher and C.M. Reeves, Function minimization by conjugate gradients. Comput. J. 7 (1994) 149–154. [Google Scholar]
- M. Giaquinta, G. Modica and J. Souček, Cartesian currents in the calculus of variations. I. Springer-Verlag, Berlin (1998). [Google Scholar]
- M. Giaquinta, G. Modica and J. Souček, Cartesian currents in the calculus of variations. II. Springer-Verlag, Berlin (1998). [Google Scholar]
- R.M. Hardt, Singularities of harmonic maps. Bull. Amer. Math. Soc. (N.S.) 34 (1997) 15–34. [Google Scholar]
- E. Hebey, Introduction à l'analyse non linéaire sur les variétés. Diderot Editeur Arts et Sciences (1987). [Google Scholar]
- F. Hélein, Régularité des applications faiblement harmoniques entre une surface et une sphère. C. R. Acad. Sci. Paris Sér. I Math. 311 (1990) 519–524. [Google Scholar]
- F. Hélein, Symétries dans les problèmes variationnels et applications harmoniques. Istituti Editoriali e Poligrafici Internazionali, Pisa-Roma (1998). [Google Scholar]
- J. Jost, Harmonic mappings betwenn surfaces. Springer-verlag, Lecture Notes in Math. 1062 (1984). [Google Scholar]
- W.P.A Klingenberg, Riemannian Geometry. Walter de Gruyter (1995). [Google Scholar]
- E. Kuwert, Minimizing the energy of maps from a surface into a 2-sphere with prescribed degree and boundary values. Manuscripta Math. 83 (1994) 31–38. [Google Scholar]
- L. Lemaire, Applications harmoniques de surfaces riemanniennes. J. Differ. Geom. 13 (1978) 51–78. [Google Scholar]
- A. Lichnewsky, Une méthode de gradient conjugué sur des variétés : application à certains problèmes de valeurs propres non linéaires. Numer. Funct. Anal. Optim. 1 (1979) 515–560. [Google Scholar]
- P.L. Lions, The concentration-compactness principle in the calculus of variations. The limit case, part 2. Rev. Mat. Iberoamericana 1 (1985) 45–121. [Google Scholar]
- C.B. Morrey, Multiple integrals in the calculus of variations. Springer, New York (1966). [Google Scholar]
- J.W. Neuberger, Sobolev gradients and boundary conditions for partial differential equations, in Recent developments in optimization theory and nonlinear analysis (Jerusalem, 1995), Amer. Math. Soc., Providence, RI. Contemp. Math. 204 (1997) 171–181 [Google Scholar]
- E. Polak, Optimization, Appl. Math. Sci. 124 (1997). [Google Scholar]
- J. Qing, Remark on the Dirichlet problem for harmonic maps from the disc into the 2-sphere. Proc. R. Soc. Edinb. 122A (1992) 63–67. [Google Scholar]
- J. Qing, Boundary regularity of weakly harmonic maps from surfaces. J. Funct. Anal. 114 (1993) 63–67. [Google Scholar]
- R. Schoen and K. Uhlenbeck, Boundary regularity and the Dirichlet problem for harmonic maps. J. Dif. Geom. 18 (1983) 253–268. [Google Scholar]
- J.R. Shewchuk, Triangle: engineering a 2d quality mesh generator and delaunay triangulator. http://www-2.cs.cmu.edu/quake/triangle.html. [Google Scholar]
- J.R. Shewchuk, An introduction to the conjugate gradient method without the agonizing pain. http://www-2.cs.cmu.edu/jrs/jrspapers.html#cg (1994). [Google Scholar]
- A. Soyeur, The Dirichlet problem for harmonic maps from the disc into the 2-sphere. Proc. R. Soc. Edinb. 113A (1989) 229–234. [Google Scholar]
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.