Free Access
Issue
ESAIM: COCV
Volume 10, Number 2, April 2004
Page(s) 259 - 270
DOI https://doi.org/10.1051/cocv:2004006
Published online 15 March 2004
  1. R.A. Brooks and T. Lozano-Pérez, A subdivision algorithm in configuration space for findpath with rotation. IEEE Systems, Man and Cybernetics 15 (1985) 224-233. [Google Scholar]
  2. M. Broucke, A geometric approach to bisimulation and verification of hybrid systems, in HSCC 1999, LNCS, F.W. Vaandragerand and J.H. van Schuppen Eds., Springer 1569 (1999) 61-75. [Google Scholar]
  3. M. Broucke, M.D. Di Benedetto, S. Di Gennaro and A. Sangiovanni-Vincentelli, Theory of optimal control using bisimulations, in HSCC 2000, LNCS, N. Lynch and B. Krogh Eds., Springer 1790 (2000) 89-102. [Google Scholar]
  4. M. Broucke, M.D. Di Benedetto, S. Di Gennaro and A. Sangiovanni-Vincentelli, Optimal control using bisimulations: Implementation, in HSCC 2001, LNCS, M.D. Di Benedetto and A. Sangiovanni-Vincentelli Eds., Springer 2034 (2001) 175-188. [Google Scholar]
  5. T.H. Cormen, C.E. Leierson and R.L. Rivest, Introduction to Algorithms. Cambridge, Mass. MIT Press, New York McGraw-Hill (1990). [Google Scholar]
  6. M. Dellnitz and A. Hohmann, A subdivision algorithm for the computation of unstable manifolds and global attractors. Numer. Math. 75 (1997) 293-317. [CrossRef] [MathSciNet] [Google Scholar]
  7. M. Dellnitz, G. Froyland and O. Junge, The algorithms behind GAIO – Set oriented numerical methods for dynamical systems, in Ergodic Theory, Analysis, and Efficient Simulation of Dynamical Systems, B. Fiedler Ed., Springer (2001) 145-174. [Google Scholar]
  8. E.W. Dijkstra, A Note on Two Problems in Connection with Graphs. Numer. Math. 5 (1959) 269-271. [CrossRef] [MathSciNet] [Google Scholar]
  9. M. Falcone, Numerical solution of Dynamic Programming equations, in Viscosity solutions and deterministic optimal control problems, M. Bardi and I. Capuzzo Dolcetta Eds., Birkhäuser (1997). [Google Scholar]
  10. Z. Galias, Interval methods for rigorous investigations of periodic orbits. Int. J. Bifur. Chaos 11 (2001) 2427-2450. [CrossRef] [Google Scholar]
  11. L. Grüne, An Adaptive Grid Scheme for the discrete Hamilton-Jacobi-Bellman Equation. Numer. Math. 75 (1997) 319-337. [CrossRef] [MathSciNet] [Google Scholar]
  12. P.E. Gill, W. Murray, M.A. Saunders and M.H. Wright, User's Guide for NPSOL (Version 4.0): a Fortran package for nonlinear programming, Report SOL 86-2, Systems Optimization Laboratory, Stanford University (1986). [Google Scholar]
  13. J. Hauser and H.M. Osinga, On the geometry of optimal control: the inverted pendulum example, in Proc. Amer. Control Conf., Arlington VA (2001) 1721-1726. [Google Scholar]
  14. A. Jadbabaie, J. Yu and J. Hauser, Unconstrained receding horizon control of nonlinear systems. IEEE Trans. Automat. Control 46 (2001) 776-783. [CrossRef] [MathSciNet] [Google Scholar]
  15. O. Junge, Rigorous discretization of subdivision techniques, in Proc. Int. Conf. Differential Equations Equadiff 99, B. Fiedler, K. Gröger and J. Sprekels Eds., World Scientific 2 (2000) 916-918. [Google Scholar]
  16. L.C. Polymenakos, D.P. Bertsekas and J.N. Tsitsiklis, Implementation of efficient algorithms for globally optimal trajectories. IEEE Trans. Automat. Control 43 (1998) 278-283. [CrossRef] [MathSciNet] [Google Scholar]
  17. K. Schiele, On the stabilization of a parametrically driven inverted double pendulum. Z. Angew. Math. Mech. 77 (1997) 143-146. [CrossRef] [MathSciNet] [Google Scholar]
  18. J.A. Sethian and A. Vladimirsky, Ordered upwind methods for static Hamilton-Jacobi equations. Proc. Nat. Acad. Sci. USA 98 (2001) 11069-11074. [CrossRef] [Google Scholar]
  19. E.D. Sontag, Mathematical Control Theory: Deterministic Finite Dimensional Systems, Texts in Applied Mathematics 6, Springer (1998). [Google Scholar]
  20. D. Szolnoki, Viability kernels and control sets. ESAIM: COCV 5 (2000) 175-185. [CrossRef] [EDP Sciences] [Google Scholar]
  21. J.N. Tsitsiklis, Efficient algorithms for globally optimal trajectories. IEEE Trans. Automat. Control 40 (1995) 1528-1538. [CrossRef] [MathSciNet] [Google Scholar]
  22. O. von Stryk, User's Guide for DIRCOL (Version 2.1): a direct collocation method for the numerical solution of optimal control problems. TU Darmstadt (2000). [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.