Free Access
Volume 10, Number 2, April 2004
Page(s) 271 - 294
Published online 15 March 2004
  1. F. Bagagiolo, An infinite horizon optimal control problem for some switching systems. Discrete Contin. Dyn. Syst. Ser. B 1 (2001) 443-462. [Google Scholar]
  2. F. Bagagiolo, Dynamic programming for some optimal control problems with hysteresis. NoDEA Nonlinear Differ. Equ. Appl. 9 (2002) 149-174. [CrossRef] [Google Scholar]
  3. F. Bagagiolo, Optimal control of finite horizon type for a multidimensional delayed switching system. Department of Mathematics, University of Trento, Preprint No. 647 (2003). [Google Scholar]
  4. M. Bardi and I. Capuzzo Dolcetta, Optimal Control and Viscosity Solutions of Hamilton–Jacobi–Bellman Equations. Birkhäuser, Boston (1997). [Google Scholar]
  5. G. Barles and P.L. Lions, Fully nonlinear Neumann type boundary conditions for first-order Hamilton–Jacobi equations. Nonlinear Anal. 16 (1991) 143-153. [CrossRef] [MathSciNet] [Google Scholar]
  6. S.A. Belbas and I.D. Mayergoyz, Optimal control of dynamic systems with hysteresis. Int. J. Control 73 (2000) 22-28. [CrossRef] [Google Scholar]
  7. S.A. Belbas and I.D. Mayergoyz, Dynamic programming for systems with hysteresis. Physica B Condensed Matter 306 (2001) 200-205. [CrossRef] [Google Scholar]
  8. M. Brokate, ODE control problems including the Preisach hysteresis operator: Necessary optimality conditions, in Dynamic Economic Models and Optimal Control, G. Feichtinger Ed., North-Holland, Amsterdam (1992) 51-68. [Google Scholar]
  9. M. Brokate and J. Sprekels, Hysteresis and Phase Transitions. Springer, Berlin (1997). [Google Scholar]
  10. M.G. Crandall and P.L. Lions, Hamilton-Jacobi equations in infinite dimensions. Part I: Uniqueness of solutions. J. Funct. Anal. 62 (1985) 379-396. [CrossRef] [MathSciNet] [Google Scholar]
  11. E. Della Torre, Magnetic Hysteresis. IEEE Press, New York (1999). [Google Scholar]
  12. M.A. Krasnoselskii and A.V. Pokrovskii, Systems with Hysteresis. Springer, Berlin (1989). Russian Ed. Nauka, Moscow (1983). [Google Scholar]
  13. P. Krejci, Convexity, Hysteresis and Dissipation in Hyperbolic Equations. Gakkotosho, Tokyo (1996). [Google Scholar]
  14. I. Ishii, A boundary value problem of the Dirichlet type for Hamilton-Jacobi equations. Ann. Scuola Norm. Sup. Pisa Cl. Sci. 16 (1989) 105-135. [MathSciNet] [Google Scholar]
  15. S.M. Lenhart, T. Seidman and J. Yong, Optimal control of a bioreactor with modal switching. Math. Models Methods Appl. Sci. 11 (2001) 933-949. [CrossRef] [MathSciNet] [Google Scholar]
  16. P.L. Lions, Neumann type boundary condition for Hamilton-Jacobi equations. Duke Math. J. 52 (1985) 793-820. [CrossRef] [MathSciNet] [Google Scholar]
  17. P.L. Lions, Viscosity solutions of fully nonlinear second-order equations and optimal stochastic control in infinite dimensions. Part I: the case of bounded stochastic evolutions. Acta Math. 161 (1988) 243-278. [CrossRef] [MathSciNet] [Google Scholar]
  18. I.D. Mayergoyz, Mathematical Models of Hysteresis. Springer, New York (1991). [Google Scholar]
  19. X. Tan and J.S. Baras, Optimal control of hysteresis in smart actuators: a viscosity solutions approach. Center for Dynamics and Control of Smart Actuators, preprint (2002). [Google Scholar]
  20. G. Tao and P.V. Kokotovic, Adaptive Control of Systems with Actuator and Sensor Nonlinearities. John Wiley & Sons, New York (1996). [Google Scholar]
  21. A. Visintin, Differential Models of Hysteresis. Springer, Heidelberg (1994). [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.