Free Access
Issue
ESAIM: COCV
Volume 10, Number 4, October 2004
Page(s) 452 - 477
DOI https://doi.org/10.1051/cocv:2004015
Published online 15 October 2004
  1. G. Alessandrini and V. Nesi, Univalent Formula -harmonic mappings. Arch. Ration. Mech. Anal. 158 (2001) 155-171. [CrossRef] [Google Scholar]
  2. G. Alessandrini and V. Nesi, Univalent Formula -harmonic mappings: applications to composites. ESAIM: COCV 7 (2002) 379-406. [CrossRef] [EDP Sciences] [Google Scholar]
  3. P. Bauman, A. Marini and V. Nesi, Univalent solutions of an elliptic system of partial differential equations arising in homogenization. Indiana Univ. Math. J. 50 (2001) (Spring). [Google Scholar]
  4. A. Bensoussan, J.L. Lions and G. Papanicolaou, Asymptotic Analysis for Periodic Structures. North-Holland (1978). [Google Scholar]
  5. M. Briane, Correctors for the homogenization of a laminate. Adv. Math. Sci. Appl. 4 (1994) 357-379. [Google Scholar]
  6. M. Briane, G.W. Milton and V. Nesi, Change of sign of the corrector's determinant in three dimensions. Arch. Ration. Mech. Anal. To appear. [Google Scholar]
  7. A. Cherkaev, Variational methods for structural optimization. Appl. Math. Sci. 140 (2000). [Google Scholar]
  8. A. Cherkaev and L.V. Gibiansky, Extremal structures of multiphase heat conducting composites. Internat J. Solids Structures 33 (1996) 2609-2618. [CrossRef] [Google Scholar]
  9. L.V. Gibiansky and O. Sigmund, Multiphase composites with extremal bulk modulus. J. Mech. Phys. Solids 48 (2000) 461-498. [CrossRef] [MathSciNet] [Google Scholar]
  10. Z. Hashin and S. Shtrikman, A variational approach to the theory of effective magnetic permeability of multiphase materials. J. Appl. Phys. 33 (1962) 3125-3131. [CrossRef] [Google Scholar]
  11. K.A. Lurie and A.V. Cherkaev, Exact estimates of conductivity of composites formed by two isotropically conducting media taken in prescribed proportions. Proc. R. Soc. Edinb. A 99 (1984) 71-87. [Google Scholar]
  12. K.A. Lurie and A.V. Cherkaev, The problem of formation of an optimal isotropic multicomponent composite. J. Opt. Theory Appl. 46 (1985) 571-589. [CrossRef] [MathSciNet] [Google Scholar]
  13. K.A. Lurie and A.V. Cherkaev, Exact estimates of the conductivity of a binary mixture of isotropic materials. Proc. R. Soc. Edinb. A 104 (1986) 21-38. [Google Scholar]
  14. G.W. Milton, Concerning bounds on transport and mechanical properties of multicomponent composite materials. Appl. Phys A 26 (1981) 125-130. [CrossRef] [Google Scholar]
  15. G.W. Milton and R.V. Kohn, Variational bounds on the effective moduli of anisotropic composites. J. Mech. Phys. Solids 36 (1988) 597-629. [CrossRef] [MathSciNet] [Google Scholar]
  16. F. Murat, Compacité par compensation : condition nécessaire et suffisante de continuité faible sous une hypothèse de rang constant. Ann. Scuola Norm. Sup. Pisa Cl. Sci. 4 (1981) 69-102. [Google Scholar]
  17. F. Murat, H-convergence. Séminaire d'Analyse Fonctionnelle et Numérique (1977-78), Université d'Alger. English translation: Murat F. and Tartar L., H-convergence. Topics in the Mathematical Modelling of Composite Materials, L. Cherkaev and R.V. Kohn Ed., Birkaüser, Boston, Progr. Nonlinear Differential Equations Appl. (1998) 21-43. [Google Scholar]
  18. F. Murat and L. Tartar, Calcul des variations et homogénéisation, in Les Méthodes de l'homogénéisation : théorie et applications en physique. Eyrolles (1985) 319-369. [Google Scholar]
  19. V. Nesi, Using quasiconvex functionals to bound the effective conductivity of composite materials. Proc. R. Soc. Edinb. Sect. A 123 (1993) 633-679. [Google Scholar]
  20. V. Nesi, Bounds on the effective conductivity of Formula composites made of Formula isotropic phases in prescribed volume fractions: the weighted translation method. Proc. R. Soc. Edinb. A 125 (1995) 1219-1239. [Google Scholar]
  21. S. Spagnolo, Sul limite delle soluzioni di problemi di Cauchy relativi all'equazione del calore. Ann. Scuola Norm. Sup. Pisa 3 (1967) 657-699. [Google Scholar]
  22. S. Spagnolo, Sulla convergenza di soluzioni di equazioni paraboliche ed ellittiche. Ann. Scuola Norm. Sup. Pisa 3 (1968) 571-597. [Google Scholar]
  23. L. Tartar, Estimations de coefficients homogénéisés. Lect. Notes Math. 704 (1978) 364-373 [CrossRef] [Google Scholar]
  24. . English translation: Estimations of homogenized coefficients, in Topics in the mathematical modelling of composite materials. Progr. Nonlinear Differ. Equ. Appl. 31 (1997) 9-20. [Google Scholar]
  25. L. Tartar, Estimations fines des coefficients homogénéisés, in Ennio De Giorgi's Colloquium, Paris, 1983, P. Kree Ed., Pitman, Boston (1985) 168-187. [Google Scholar]
  26. L. Tartar, Compensated compactness and applications to p.d.e. in nonlinear analysis and mechanics, Heriot-Watt Symposium, Vol. IV, R.J. Knops Ed., Pitman, Boston (1979) 136-212. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.