Free Access
Issue
ESAIM: COCV
Volume 10, Number 4, October 2004
Page(s) 478 - 504
DOI https://doi.org/10.1051/cocv:2004016
Published online 15 October 2004
  1. M. Abdelwahed, M. Amara, F. El Dabaghi and M. Hassine, A numerical modelling of a two phase flow for water eutrophication problems. ECCOMAS 2000, European Congress on Computational Methods in Applied Sciences and Engineering, Barcelone, 11–14 September (2000). [Google Scholar]
  2. G. Allaire and R. Kohn, Optimal bounds on the effective behavior of a mixture of two well-order elastic materials. Quat. Appl. Math. 51 (1993) 643-674. [Google Scholar]
  3. M. Bendsoe, Optimal topology design of continuum structure: an introduction. Technical report, Department of mathematics, Technical University of Denmark, DK2800 Lyngby, Denmark, September (1996). [Google Scholar]
  4. F. Brezzi and M. Fortin, Mixed and hybrid finite element method. Springer Ser. Comput. Math. 15 (1991). [Google Scholar]
  5. G. Buttazzo and G. Dal Maso, Shape optimization for Dirichlet problems: Relaxed formulation and optimality conditions. Appl. Math. Optim. 23 (1991) 17-49. [Google Scholar]
  6. J. Céa, A. Gioan and J. Michel, Quelques résultats sur l'identification de domaines. CALCOLO (1973). [Google Scholar]
  7. J. Céa, Conception optimale ou identification de forme, calcul rapide de la dérivée directionnelle de la fonction coût. ESAIM: M2AN 20 (1986) 371-402. [Google Scholar]
  8. J. Céa, S. Garreau, Ph. Guillaume and M. Masmoudi, The shape and Topological Optimizations Connection. Comput. Methods Appl. Mech. Engrg. 188 (2000) 713-726. [CrossRef] [MathSciNet] [Google Scholar]
  9. M. Chipot and G. Dal Maso, Relaxed shape optimization: the case of nonnegative data for the Dirichlet problems. Adv. Math. Sci. Appl. 1 (1992) 47-81. [MathSciNet] [Google Scholar]
  10. P. Ciarlet, The Finite Element Method for Elliptic Problems. North-Holland (1978). [Google Scholar]
  11. R. Dautray et J. Lions, Analyse mathémathique et calcul numérique pour les sciences et les techniques. Masson, collection CEA (1987). [Google Scholar]
  12. J. Douglas and T.F. Russell, Numerical methods for convection dominated diffusion problems based on combining the method of characteristics with finite element methods or finite difference method. SIAM J. Numer. Anal. 19 (1982) 871-885. [Google Scholar]
  13. M. Fortin, R. Peyret et R. Temam, Résolution numérique des équations de Navier-Stokes pour un fluide incompressible. J. Mécanique 10 (1971). [Google Scholar]
  14. S. Garreau, Ph. Guillaume and M. Masmoudi, The topological sensitivity for linear isotropic elasticity. European Conferance on Computationnal Mechanics (1999) (ECCM99), report MIP 99.45. [Google Scholar]
  15. S. Garreau, Ph. Guillaume and M. Masmoudi, The topological asymptotic for pde systems: the elasticity case. SIAM J. Control Optim. 39 (2001) 1756-1778. [Google Scholar]
  16. P. Germain and P. Muller, Introduction à la mécanique des milieux continus. Masson (1994). [Google Scholar]
  17. V. Girault and P.A. Raviart, Finite element methods for Navier-Stokes equations, Theory and Algorithms. Springer-Verlag Berlin (1986). [Google Scholar]
  18. J. Giroire, Formulations variationnelles par équations intégrales de problèmes aux limites extérieurs. Thèse, École Polytechnique, Palaiseau (1976). [Google Scholar]
  19. R. Glowinski, Numerical methods for nonlinear variational problems. J. Optim. Theory Appl. 57 (1988) 407-422. [Google Scholar]
  20. R. Glowinski and O. Pironneau, Toward the computational of minimun drag profile in viscous laminar flow. Appl. Math. Model. 1 (1976) 58-66. [CrossRef] [Google Scholar]
  21. P. Grisvard, Elliptic problems in non smooth domains. Pitman Publishing Inc., London (1985). [Google Scholar]
  22. Ph. Guillaume and M. Masmoudi, Computation of high order derivatives in optimal shape design. Numer. Math. 67 (1994) 231-250. [CrossRef] [Google Scholar]
  23. Ph. Guillaume and K. Sid Idris, The topological asymptotic expansion for the Dirichlet Problem. SIAM J. Control. Optim. 41 (2002) 1052-1072. [Google Scholar]
  24. Ph. Guillaume and K. Sid Idris, Topological sensitivity and shape optimization for the Stokes equations. Rapport MIP (2001) 01-24. [Google Scholar]
  25. M. Hassine, Contrôle des processus d'aération des lacs eutrophes. Thesis, Tunis II University, ENIT, Tunisia (2003). [Google Scholar]
  26. J. Jacobsen, N. Olhoff and E. Ronholt, Generalized shape optimization of three-dimensional structures using materials with optimum microstructures. Technical report, Institute of Mechanical Engineering, Aalborg University, DK-9920 Aalborg, Denmark (1996). [Google Scholar]
  27. J.L. Lions and E. Magenes, Problèmes aux limites non homogènes et applications. Dunod (1996). [Google Scholar]
  28. M. Masmoudi, Outils pour la conception optimale de formes. Thèse d'État, Université de Nice (1987). [Google Scholar]
  29. M. Masmoudi, The topological asymptotic, in Computational Methods for Control Applications, H. Kawarada and J. Periaux Eds., International Séries GAKUTO (2002). [Google Scholar]
  30. F. Murat and L. Tartar, Calcul des variations et homogénéisation, in Les méthodes de l'homogénéisation : Théorie et applications en physique. Eyrolles (1985) 319-369. [Google Scholar]
  31. O. Pironneau, Méthode des éléments finis pour les fluides. Masson, Paris (1988). [Google Scholar]
  32. O. Pironneau, Optimal Shape Design for Elliptic Systems. Springer, Berlin (1984). [Google Scholar]
  33. J. Simon, Domain variation for Stokes flow. X. Li and J. Yang Eds., Springer, Berlin, Lect. Notes Control Inform. Sci. 159 28-42 (1990). [Google Scholar]
  34. J. Simon, Domain variation for drag Stokes flows. A. Bermudez Eds., Springer, Berlin, Lect. Notes Control Inform. Sci. 114 (1987) 277-283. [Google Scholar]
  35. A. Schumacher, Topologieoptimierung von bauteilstrukturen unter verwendung von lopchpositionierungkrieterien. Thesis, Universitat-Gesamthochschule-Siegen (1995). [Google Scholar]
  36. M. Shœnauer, L. Kallel and F. Jouve, Mechanical inclusions identification by evolutionary computation. Rev. Eur. Élém. Finis 5 (1996) 619-648. [Google Scholar]
  37. J. Sokolowski and A. Zochowski, On the topological derivative in shape optimization. SIAM J. Control Optim. 37 (1999) 1251-1272 (electronic). [CrossRef] [MathSciNet] [Google Scholar]
  38. R. Temam, Navier Stokes equations (1985). [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.