Free Access
Issue |
ESAIM: COCV
Volume 10, Number 4, October 2004
|
|
---|---|---|
Page(s) | 574 - 592 | |
DOI | https://doi.org/10.1051/cocv:2004021 | |
Published online | 15 October 2004 |
- R. Adams, Sobolev Spaces. Academic Press, New York (1975). [Google Scholar]
- K. Chrysafinos and L.S. Hou, Error estimates for semidiscrete finite element approximations of linear and semilinear parabolic equations under minimal regularity assumptions. SIAM J. Numer. Anal. 40 (2002) 282-306. [CrossRef] [MathSciNet] [Google Scholar]
- A. Fursikov,Optimal control of distributed systems. Theories and Applications. AMS Providence (2000). [Google Scholar]
- V. Girault and P.-A. Raviart, Finite Element Methods for Navier-Stokes. Springer-Verlag, New York (1986). [Google Scholar]
- M.D. Gunzburger, L.S. Hou and T. Svobodny, Analysis and finite element approximation of optimal control problems for the stationary Navier-Stokes equations with Dirichlet controls. ESAIM: M2AN 25 (1991) 711-748. [Google Scholar]
- M.D. Gunzburger and S. Manservisi, The velocity tracking problem for Navier-Stokes flows with bounded distributed control. SIAM J. Control Optim. 37 (2000) 1913-1945. [Google Scholar]
- M.D. Gunzburger and S. Manservisi, Analysis and approximation of the velocity tracking problem for Navier-Stokes flows with distributed control. SIAM J. Numer. Anal. 37 (2000) 1481-1512. [CrossRef] [MathSciNet] [Google Scholar]
- L.S. Hou, Error estimates for semidiscrete finite element approximation of the Stokes equations under minimal regularity assumptions. J. Sci. Comput. 16 (2001) 287-317. [CrossRef] [MathSciNet] [Google Scholar]
- L.S. Hou and S.S. Ravindran, A penalized Neumann control approach for solving an optimal Dirichlet control problem for the Navier-Stokes equations. SIAM J. Control Optim. 36 (1998) 1795-1814. [CrossRef] [MathSciNet] [Google Scholar]
- Jie Shen, On error estimates of the penalty method for unsteady Navier-Stokes equations. SIAM J. Numer. Anal. 32 (1995) 386-403. [CrossRef] [MathSciNet] [Google Scholar]
- R. Temam, Navier-Stokes equations. North-Holland, Amsterdam (1979). [Google Scholar]
- R. Temam, Une méthode d'approximation de la solution des équations de Navier-Stokes. Bull. Soc. Math. France 98 (1968) 115-152. [Google Scholar]
- B.A. Ton, Optimal shape control problems for the Navier-Stokes equations. SIAM J. Control Optim. 41 (2003) 1733-1747. [CrossRef] [MathSciNet] [Google Scholar]
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.