Free Access
Volume 10, Number 4, October 2004
Page(s) 593 - 614
Published online 15 October 2004
  1. A.A. Agrachev and Yu.L. Sachkov, Control Theory from the Geometric Viewpoint. Springer-Verlag, EMS (2004) 1-410. [Google Scholar]
  2. A.A. Agrachev and A.V. Sarychev, Sub-Riemannian metrics: minimality of abnormal geodesics versus subanaliticity. ESAIM: COCV 2 (1997) 377-448. [CrossRef] [EDP Sciences] [Google Scholar]
  3. C. Altafini, Controllability of quantum mechanical systems by root space decomposition of Formula . J. Math. Phys. 43 (2002) 2051-2062. [CrossRef] [MathSciNet] [Google Scholar]
  4. R. El Assoudi, J.P. Gauthier and I.A.K. Kupka, On subsemigroups of semisimple Lie groups. Ann. Inst. H. Poincaré Anal. Non Linéaire 13 (1996) 117-133. [Google Scholar]
  5. A. Bellaiche, The tangent space in sub-Riemannian geometry. Sub-Riemannian geometry. Progr. Math. 144 (1996) 1-78. [Google Scholar]
  6. K. Bergmann, H. Theuer and B.W. Shore, Coerent population transfer among quantum states of atomes and molecules. Rev. Mod. Phys. 70 (1998) 1003-1025. [Google Scholar]
  7. V.G. Boltyanskii, Sufficient Conditions for Optimality and the Justification of the Dynamics Programming Principle. SIAM J. Control Optim. 4 (1996) 326-361. [Google Scholar]
  8. B. Bonnard and M. Chyba, The Role of Singular Trajectories in Control Theory. Springer, SMAI, Vol. 40 (2003). [Google Scholar]
  9. U. Boscain and B Piccoli, Optimal Synthesis for Control Systems on 2-D Manifolds. Springer, SMAI, Vol. 43 (2004). [Google Scholar]
  10. U. Boscain, G. Charlot, J.-P. Gauthier, S. Guérin and H.-R. Jauslin, Optimal Control in laser-induced population transfer for two- and three-level quantum systems. J. Math. Phys. 43 (2002) 2107-2132. [CrossRef] [MathSciNet] [Google Scholar]
  11. U. Boscain, T. Chambrion and J.-P. Gauthier, On the K+P problem for a three-level quantum system: Optimality implies resonance. J. Dyn. Control Syst. 8 (2002) 547-572. [Google Scholar]
  12. U. Boscain, T. Chambrion and J.-P. Gauthier, Optimal Control on a n-level Quantum System, in Proc. of the 2nd IFAC Workshop on Lagrangian and Hamiltonian Methods for Nonlinear Control, Astolfi, Gordillo and van der Schaft Eds., Elsevier (2003). [Google Scholar]
  13. W.M. Boothby and E.N. Wilson, Determination of the transitivity of bilinear systems. SIAM J. Control Optim. 17 (1979) 212-221. [Google Scholar]
  14. P. Brunovsky, Existence of Regular Syntheses for General Problems. J. Differ. Equations 38 (1980) 317-343. [Google Scholar]
  15. P. Brunovsky, Every Normal Linear System Has a Regular Time-Optimal Synthesis. Math. Slovaca 28 (1978) 81-100. [MathSciNet] [Google Scholar]
  16. D. D'Alessandro and M. Dahleh, Optimal control of two-level quantum systems. IEEE Trans. Automat. Control 46 (2001) 866-876. [CrossRef] [MathSciNet] [Google Scholar]
  17. U. Gaubatz, P. Rudecki, M. Becker, S. Schiemann, M. Kulz and K. Bergmann, Population switching between vibrational levels in molecular beams. Chem. Phys. Lett. 149 (1988) 463. [Google Scholar]
  18. J.P. Gauthier and G. Bornard, Controlabilite des sytemes bilineaires. SIAM J. Control Optim. 20 (1982) 377-384. [CrossRef] [MathSciNet] [Google Scholar]
  19. M. Gromov, Carnot-Carathéodory spaces seen from within. Sub-Riemannian geometry. Progr. Math. 144 (1996) 79-323. [Google Scholar]
  20. R.G. Hulet and D. Kleppner, Rydberg Atoms in “Circular” states. Phys. Rev. Lett. 51 (1983) 1430-1433. [CrossRef] [Google Scholar]
  21. V. Jurdjevic, Geometric Control Theory. Cambridge University Press (1997). [Google Scholar]
  22. V. Jurdjevic and I.K. Kupka, Control Systems on Semisimple Lie Groups and Their Homogeneous Spaces. Ann. Inst. Fourier 31 (1981) 151-179. [Google Scholar]
  23. V. Jurdjevic and H.J. Sussmann, Controllability of Non-Linear systems. J. Differ. Equation 12 95-116. [Google Scholar]
  24. N. Khaneja, R. Brockett and S.J. Glaser, Time optimal control in spin systems. Phys. Rev. A 63 (2001). [Google Scholar]
  25. N. Khaneja and S.J. Glaser, Cartan decomposition of SU(n) and Control of Spin Systems. J. Chem. Phys. 267 (2001) 11-23. [CrossRef] [Google Scholar]
  26. C. Liedenbaum, S. Stolte and J. Reuss, Inversion produced and reversed by adiabatic passage. Phys. Rep. 178 (1989) 1-24. [CrossRef] [Google Scholar]
  27. R. Montgomery, A Tour of Subriemannian Geometry. American Mathematical Society, Mathematical Surveys and Monographs (2002). [Google Scholar]
  28. R. Montgomery, A survey of singular curves in sub-Riemannian geometry. J. Dyn. Control Syst. 1 (1995) 49-90. [Google Scholar]
  29. B. Piccoli, Classifications of Generic Singularities for the Planar Time-Optimal Synthesis. SIAM J. Control Optim. 34 (1996) 1914-1946. [CrossRef] [MathSciNet] [Google Scholar]
  30. B. Piccoli and H.J. Sussmann, Regular Synthesis and Sufficiency Conditions for Optimality. SIAM. J. Control Optim. 39 (2000) 359-410. [Google Scholar]
  31. L.S. Pontryagin, V. Boltianski, R. Gamkrelidze and E. Mitchtchenko, The Mathematical Theory of Optimal Processes. John Wiley and Sons, Inc (1961). [Google Scholar]
  32. M.A. Daleh, A.M. Peirce and H. Rabitz, Optimal control of quantum-mechanical systems: Existence, numerical approximation, and applications. Phys. Rev. A 37 (1988). [Google Scholar]
  33. V. Ramakrishna, K.L. Flores, H. Rabitz and R.Ober, Quantum control by decomposition of su(2). Phys. Rev. A 62 (2000). [Google Scholar]
  34. Y. Sachkov, Controllability of Invariant Systems on Lie Groups and Homogeneous Spaces. J. Math. Sci. 100 (2000) 2355-2427. [Google Scholar]
  35. B.W. Shore, The theory of coherent atomic excitation. New York, NY, Wiley (1990). [Google Scholar]
  36. H.J. Sussmann, The Structure of Time-Optimal Trajectories for Single-Input Systems in the Plane: the Formula Nonsingular Case. SIAM J. Control Optim. 25 (1987) 433-465. [CrossRef] [MathSciNet] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.