Free Access
Volume 10, Number 4, October 2004
Page(s) 593 - 614
Published online 15 October 2004
  1. A.A. Agrachev and Yu.L. Sachkov, Control Theory from the Geometric Viewpoint. Springer-Verlag, EMS (2004) 1-410.
  2. A.A. Agrachev and A.V. Sarychev, Sub-Riemannian metrics: minimality of abnormal geodesics versus subanaliticity. ESAIM: COCV 2 (1997) 377-448. [CrossRef] [EDP Sciences]
  3. C. Altafini, Controllability of quantum mechanical systems by root space decomposition of Formula . J. Math. Phys. 43 (2002) 2051-2062. [CrossRef] [MathSciNet]
  4. R. El Assoudi, J.P. Gauthier and I.A.K. Kupka, On subsemigroups of semisimple Lie groups. Ann. Inst. H. Poincaré Anal. Non Linéaire 13 (1996) 117-133.
  5. A. Bellaiche, The tangent space in sub-Riemannian geometry. Sub-Riemannian geometry. Progr. Math. 144 (1996) 1-78.
  6. K. Bergmann, H. Theuer and B.W. Shore, Coerent population transfer among quantum states of atomes and molecules. Rev. Mod. Phys. 70 (1998) 1003-1025.
  7. V.G. Boltyanskii, Sufficient Conditions for Optimality and the Justification of the Dynamics Programming Principle. SIAM J. Control Optim. 4 (1996) 326-361. [CrossRef] [MathSciNet]
  8. B. Bonnard and M. Chyba, The Role of Singular Trajectories in Control Theory. Springer, SMAI, Vol. 40 (2003).
  9. U. Boscain and B Piccoli, Optimal Synthesis for Control Systems on 2-D Manifolds. Springer, SMAI, Vol. 43 (2004).
  10. U. Boscain, G. Charlot, J.-P. Gauthier, S. Guérin and H.-R. Jauslin, Optimal Control in laser-induced population transfer for two- and three-level quantum systems. J. Math. Phys. 43 (2002) 2107-2132. [CrossRef] [MathSciNet]
  11. U. Boscain, T. Chambrion and J.-P. Gauthier, On the K+P problem for a three-level quantum system: Optimality implies resonance. J. Dyn. Control Syst. 8 (2002) 547-572. [CrossRef]
  12. U. Boscain, T. Chambrion and J.-P. Gauthier, Optimal Control on a n-level Quantum System, in Proc. of the 2nd IFAC Workshop on Lagrangian and Hamiltonian Methods for Nonlinear Control, Astolfi, Gordillo and van der Schaft Eds., Elsevier (2003).
  13. W.M. Boothby and E.N. Wilson, Determination of the transitivity of bilinear systems. SIAM J. Control Optim. 17 (1979) 212-221.
  14. P. Brunovsky, Existence of Regular Syntheses for General Problems. J. Differ. Equations 38 (1980) 317-343. [CrossRef] [MathSciNet]
  15. P. Brunovsky, Every Normal Linear System Has a Regular Time-Optimal Synthesis. Math. Slovaca 28 (1978) 81-100. [MathSciNet]
  16. D. D'Alessandro and M. Dahleh, Optimal control of two-level quantum systems. IEEE Trans. Automat. Control 46 (2001) 866-876. [CrossRef] [MathSciNet]
  17. U. Gaubatz, P. Rudecki, M. Becker, S. Schiemann, M. Kulz and K. Bergmann, Population switching between vibrational levels in molecular beams. Chem. Phys. Lett. 149 (1988) 463.
  18. J.P. Gauthier and G. Bornard, Controlabilite des sytemes bilineaires. SIAM J. Control Optim. 20 (1982) 377-384. [CrossRef] [MathSciNet]
  19. M. Gromov, Carnot-Carathéodory spaces seen from within. Sub-Riemannian geometry. Progr. Math. 144 (1996) 79-323.
  20. R.G. Hulet and D. Kleppner, Rydberg Atoms in “Circular” states. Phys. Rev. Lett. 51 (1983) 1430-1433. [CrossRef]
  21. V. Jurdjevic, Geometric Control Theory. Cambridge University Press (1997).
  22. V. Jurdjevic and I.K. Kupka, Control Systems on Semisimple Lie Groups and Their Homogeneous Spaces. Ann. Inst. Fourier 31 (1981) 151-179.
  23. V. Jurdjevic and H.J. Sussmann, Controllability of Non-Linear systems. J. Differ. Equation 12 95-116.
  24. N. Khaneja, R. Brockett and S.J. Glaser, Time optimal control in spin systems. Phys. Rev. A 63 (2001).
  25. N. Khaneja and S.J. Glaser, Cartan decomposition of SU(n) and Control of Spin Systems. J. Chem. Phys. 267 (2001) 11-23. [CrossRef]
  26. C. Liedenbaum, S. Stolte and J. Reuss, Inversion produced and reversed by adiabatic passage. Phys. Rep. 178 (1989) 1-24. [CrossRef]
  27. R. Montgomery, A Tour of Subriemannian Geometry. American Mathematical Society, Mathematical Surveys and Monographs (2002).
  28. R. Montgomery, A survey of singular curves in sub-Riemannian geometry. J. Dyn. Control Syst. 1 (1995) 49-90. [CrossRef]
  29. B. Piccoli, Classifications of Generic Singularities for the Planar Time-Optimal Synthesis. SIAM J. Control Optim. 34 (1996) 1914-1946. [CrossRef] [MathSciNet]
  30. B. Piccoli and H.J. Sussmann, Regular Synthesis and Sufficiency Conditions for Optimality. SIAM. J. Control Optim. 39 (2000) 359-410.
  31. L.S. Pontryagin, V. Boltianski, R. Gamkrelidze and E. Mitchtchenko, The Mathematical Theory of Optimal Processes. John Wiley and Sons, Inc (1961).
  32. M.A. Daleh, A.M. Peirce and H. Rabitz, Optimal control of quantum-mechanical systems: Existence, numerical approximation, and applications. Phys. Rev. A 37 (1988).
  33. V. Ramakrishna, K.L. Flores, H. Rabitz and R.Ober, Quantum control by decomposition of su(2). Phys. Rev. A 62 (2000).
  34. Y. Sachkov, Controllability of Invariant Systems on Lie Groups and Homogeneous Spaces. J. Math. Sci. 100 (2000) 2355-2427.
  35. B.W. Shore, The theory of coherent atomic excitation. New York, NY, Wiley (1990).
  36. H.J. Sussmann, The Structure of Time-Optimal Trajectories for Single-Input Systems in the Plane: the Formula Nonsingular Case. SIAM J. Control Optim. 25 (1987) 433-465. [CrossRef] [MathSciNet]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.