Free Access
Volume 11, Number 1, January 2005
Page(s) 139 - 160
Published online 15 December 2004
  1. E. Acerbi and N. Fusco, Semicontinuity results in the calculus of variations. Arch. Rat. Mech. Anal. 86 (1984) 125–145. [Google Scholar]
  2. M. Bocea and I. Fonseca, Equi-integrability results for 3D-2D dimension reduction problems. ESAIM: COCV 7 (2002) 443–470. [CrossRef] [EDP Sciences] [Google Scholar]
  3. G. Bouchitté, I. Fonseca and M.L. Mascarenhas, Bending moment in membrane theory. J. Elasticity 73 (2003) 75–99. [CrossRef] [MathSciNet] [Google Scholar]
  4. A. Braides, personal communication. [Google Scholar]
  5. A. Braides and A. Defranceschi, Homogenization of multiple integrals. Oxford lectures Ser. Math. Appl. Clarendon Press, Oxford (1998). [Google Scholar]
  6. A. Braides, I. Fonseca and G. Francfort, 3D-2D asymptotic analysis for inhomogeneous thin films. Indiana Univ. Math. J. 49 (2000) 1367–1404. [MathSciNet] [Google Scholar]
  7. B. Dacorogna, Direct methods in the calculus of variations. Springer-Verlag, Berlin (1988). [Google Scholar]
  8. G. Dal Maso, An introduction to Γ-convergence. Birkhaüser, Boston (1993). [Google Scholar]
  9. I. Ekeland and R. Temam, Analyse convexe et problèmes variationnels. Dunod, Gauthiers-Villars, Paris (1974). [Google Scholar]
  10. L.C. Evans and R.F. Gariepy, Measure theory and fine properties of functions, Boca Raton, CRC Press (1992). [Google Scholar]
  11. D. Fox, A. Raoult and J.C. Simo, A justification of nonlinear properly invariant plate theories. Arch. Rat. Mech. Anal. 25 (1992) 157–199. [Google Scholar]
  12. G. Friesecke, R.D. James and S. Müller, Rigorous derivation of nonlinear plate theory and geometric rigidity. C.R. Acad. Sci. Paris, Série I 334 (2001) 173–178. [Google Scholar]
  13. G. Friesecke, R.D. James and S. Müller, A Theorem on geometric rigidity and the derivation of nonlinear plate theory from three dimensional elasticity. Comm. Pure Appl. Math. 55 (2002) 1461–1506. [Google Scholar]
  14. G. Friesecke, R.D. James and S. Müller, The Föppl-von Kármán plate theory as a low energy Γ-limit of nonlinear elasticity. C.R. Acad. Sci. Paris, Série I 335 (2002) 201–206. [Google Scholar]
  15. H. Le Dret and A. Raoult, The nonlinear membrane model as variational limit of nonlinear three-dimensional elasticity. J. Math. Pures Appl. 74 (1995) 549–578. [MathSciNet] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.