Free Access
Issue
ESAIM: COCV
Volume 11, Number 1, January 2005
Page(s) 72 - 87
DOI https://doi.org/10.1051/cocv:2004033
Published online 15 December 2004
  1. R.A. Adams, Sobolev Spaces. A.P (1975).
  2. V.I. Arnold, Proof of a Theorem of A.N. Kolmogorov on the invariance of quasi-periodic motions under small perturbations of the Hamiltonian. Russ. Math. Surv. 18 (1963) 9–36. [CrossRef]
  3. H. Brezis and L. Nirenberg, Forced vibrations for a nonlinear wave equation. CPAM, XXXI(1) (1978) 1–30.
  4. H. Brezis, J.M. Coron and L. Nirenberg, Free Vibrations for a Nonlinear Wave Equation and a Theorem of P. Rabinowitz. CPAM, XXXIII (1980) 667–684.
  5. G. Friesecke and A.D. Wattis Jonathan, Existence Theorem for Solitary Waves on Lattices. Commun. Math. Phys. 161 (1994) 391–418. [CrossRef]
  6. G. Iooss, Travelling waves in the Fermi-Pasta-Ulam lattice. Nonlinearity 13 (2000) 849–866. [CrossRef] [MathSciNet]
  7. M.A. Krasnoselsky and Y.B. Rutitsky, Convex Functions and Orlicz Spaces. Internat. Monogr. Adv. Math. Phys. Hindustan Publishing Corpn., India (1962).
  8. H. Lovicarova', Periodic solutions of a weakly nonlinear wave equation in one dimension. Czechmath. J. 19 (1969) 324–342.
  9. J. Moser, On invariant curves of area-preserving mappings of an annulus. Nachr. Akad. Wiss. Göttingen, K1 2 (1962) 1.
  10. A.V. Mikhailov, Integrability of a Two-Dimensional Generalization of the Toda Chain. JETP Lett. 30 (1979) 414–413.
  11. L. Nirenberg, Variational Methods in nonlinear problems. M. Giaquinta Ed., Springer-Verlag, Lect. Notes Math. 1365 (1987).
  12. P.H. Rabinowitz, Periodic solutions of Hamiltonian Systems. Comm. Pure Appl. Math. 31 (1978) 157–184. [CrossRef] [MathSciNet]
  13. B. Ruf and P.N. Srikanth, On periodic Motions of Lattices of Toda Type via Critical Point Theory. Arch. Ration. Mech. Anal. 126 (1994) 369–385. [CrossRef]
  14. M. Toda, Theory of Nonlinear Lattices. Springer-Verlag (1989).

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.