Free Access
Volume 11, Number 1, January 2005
Page(s) 72 - 87
Published online 15 December 2004
  1. R.A. Adams, Sobolev Spaces. A.P (1975). [Google Scholar]
  2. V.I. Arnold, Proof of a Theorem of A.N. Kolmogorov on the invariance of quasi-periodic motions under small perturbations of the Hamiltonian. Russ. Math. Surv. 18 (1963) 9–36. [CrossRef] [Google Scholar]
  3. H. Brezis and L. Nirenberg, Forced vibrations for a nonlinear wave equation. CPAM, XXXI(1) (1978) 1–30. [Google Scholar]
  4. H. Brezis, J.M. Coron and L. Nirenberg, Free Vibrations for a Nonlinear Wave Equation and a Theorem of P. Rabinowitz. CPAM, XXXIII (1980) 667–684. [Google Scholar]
  5. G. Friesecke and A.D. Wattis Jonathan, Existence Theorem for Solitary Waves on Lattices. Commun. Math. Phys. 161 (1994) 391–418. [CrossRef] [Google Scholar]
  6. G. Iooss, Travelling waves in the Fermi-Pasta-Ulam lattice. Nonlinearity 13 (2000) 849–866. [CrossRef] [MathSciNet] [Google Scholar]
  7. M.A. Krasnoselsky and Y.B. Rutitsky, Convex Functions and Orlicz Spaces. Internat. Monogr. Adv. Math. Phys. Hindustan Publishing Corpn., India (1962). [Google Scholar]
  8. H. Lovicarova', Periodic solutions of a weakly nonlinear wave equation in one dimension. Czechmath. J. 19 (1969) 324–342. [Google Scholar]
  9. J. Moser, On invariant curves of area-preserving mappings of an annulus. Nachr. Akad. Wiss. Göttingen, K1 2 (1962) 1. [Google Scholar]
  10. A.V. Mikhailov, Integrability of a Two-Dimensional Generalization of the Toda Chain. JETP Lett. 30 (1979) 414–413. [Google Scholar]
  11. L. Nirenberg, Variational Methods in nonlinear problems. M. Giaquinta Ed., Springer-Verlag, Lect. Notes Math. 1365 (1987). [Google Scholar]
  12. P.H. Rabinowitz, Periodic solutions of Hamiltonian Systems. Comm. Pure Appl. Math. 31 (1978) 157–184. [CrossRef] [MathSciNet] [Google Scholar]
  13. B. Ruf and P.N. Srikanth, On periodic Motions of Lattices of Toda Type via Critical Point Theory. Arch. Ration. Mech. Anal. 126 (1994) 369–385. [CrossRef] [Google Scholar]
  14. M. Toda, Theory of Nonlinear Lattices. Springer-Verlag (1989). [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.