Free Access
Volume 11, Number 1, January 2005
Page(s) 88 - 101
Published online 15 December 2004
  1. L. Ambrosio and P. Tilli, Selected Topics on “Analysis on Metric Spaces”. Appunti dei Corsi Tenuti da Docenti della Scuola, Scuola Normale Superiore, Pisa (2000). [Google Scholar]
  2. G. Bouchitté and G. Buttazzo, Characterization of Optimal Shapes and Masses through Monge-Kantorovich Equation. J. Eur. Math. Soc. (JEMS) 3 (2001) 139–168. [CrossRef] [MathSciNet] [Google Scholar]
  3. A. Brancolini, Problemi di Ottimizzazione in Teoria del Trasporto e Applicazioni. Master's thesis, Università di Pisa, Pisa (2002). Available at [Google Scholar]
  4. G. Buttazzo, Semicontinuity, Relaxation and Integral Representation in the Calculus of Variations. Pitman Research Notes in Mathematics Series 207. Longman Scientific & Technical, Harlow (1989). [Google Scholar]
  5. G. Buttazzo and L. De Pascale, Optimal Shapes and Masses, and Optimal Transportation Problems, in Optimal Transportation and Applications (Martina Franca, 2001). Lecture Notes in Mathematics, CIME series 1813, Springer-Verlag, Berlin (2003) 11–52. [Google Scholar]
  6. G. Buttazzo, E. Oudet and E. Stepanov, Optimal Transportation Problems with Free Dirichlet Regions, in Variational Methods for Discontinuous Structures (Cernobbio, 2001). Progress in Nonlinear Differential Equations and their Applications 51, Birkhäuser Verlag, Basel (2002) 41–65. [Google Scholar]
  7. G. Buttazzo and E. Stepanov, Optimal Transportation Networks as Free Dirichlet Regions for the Monge-Kantorovich Problem. Ann. Scuola Norm. Sup. Pisa Cl. Sci. 2 (2003) 631–678. [Google Scholar]
  8. G. Dal Maso and R. Toader, A Model for the Quasi-Static Growth of Brittle Fractures: Existence and Approximation Results. Arch. Rational Mech. Anal. 162 (2002) 101–135. [Google Scholar]
  9. K.J. Falconer, The Geometry of Fractal Sets. Cambridge Tracts in Mathematics, Cambridge University Press, Cambridge (1986). [Google Scholar]
  10. L.V. Kantorovich, On the Transfer of Masses. Dokl. Akad. Nauk. SSSR (1942). [Google Scholar]
  11. L.V. Kantorovich, On a Problem of Monge. Uspekhi Mat. Nauk. (1948). [Google Scholar]
  12. G. Monge, Mémoire sur la théorie des Déblais et des Remblais. Histoire de l'Acad. des Sciences de Paris (1781) 666–704. [Google Scholar]
  13. S.J.N. Mosconi and P. Tilli, Γconvergence for the Irrigation Problem. Preprint Scuola Normale Superiore, Pisa (2003). Available at [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.