Free Access
Issue
ESAIM: COCV
Volume 11, Number 2, April 2005
Page(s) 204 - 218
DOI https://doi.org/10.1051/cocv:2005002
Published online 15 March 2005
  1. M. Abdelouhab, J.L. Bona, M. Felland and J.-C. Saut, Nonlocal models for nonlinear, dispersive waves. Physica D 40 (1989) 360–392. [CrossRef] [MathSciNet]
  2. M.J. Ablowitz and A.S. Fokas, The inverse scattering transform for the Benjamin-Ono equation-a pivot to multidimensional problems. Stud. Appl. Math. 68 (1983) 1–10. [MathSciNet]
  3. T.B. Benjamin, Internal waves of permanent form in fluids of great depth. J. Fluid Mech. 29 (1967) 559–592. [CrossRef]
  4. J. Bona and R. Winther, The Korteweg-de Vries equation, posed in a quarter-plane. SIAM J. Math. Anal. 14 (1983) 1056–1106. [CrossRef] [MathSciNet]
  5. J. Bourgain, Fourier transform restriction phenomena for certain lattice subsets and applications to nonlinear evolution equations. Geom. Funct. Anal. 3 (1993) 107–156, 209–262. [CrossRef] [MathSciNet]
  6. K.M. Case, Benjamin-Ono related equations and their solutions. Proc. Nat. Acad. Sci. USA 76 (1979) 1–3. [CrossRef]
  7. T. Cazenave and A. Haraux, An Introduction to Semilinear Evolution Equation. Oxford Sci. Publ. (1998).
  8. J. Colliander and C.E. Kenig, The generalized Korteweg-de Vries equation on the half line. Comm. Partial Differential Equations 27 (2002) 2187–2266. [CrossRef] [MathSciNet]
  9. K.D. Danov and M.S. Ruderman, Nonlinear waves on shallow water in the presence of a horizontal magnetic field. Fluid Dynamics 18 (1983) 751–756. [CrossRef] [MathSciNet]
  10. A.E. Ingham, A further note on trigonometrical inequalities. Proc. Cambridge Philos. Soc. 46 (1950) 535–537. [CrossRef] [MathSciNet]
  11. R. Iorio, On the Cauchy problem for the Benjamin-Ono equation. Comm. Partial Differentiel Equations 11 (1986) 1031–1081. [CrossRef]
  12. Y. Ishimori, Solitons in a one-dimensional Lennard/Mhy Jones lattice. Progr. Theoret. Phys. 68 (1982) 402–410. [CrossRef] [MathSciNet]
  13. C.E. Kenig and K. Koenig, On the local well-posedness of the Benjamin-Ono and modified Benjamin-Ono equations. Math. Res. Lett. 10 (2003) 879–895. [MathSciNet]
  14. C.E. Kenig, G. Ponce and L. Vega, A bilinear estimate with application to the KdV equation. J. Amer. Math Soc. 9 (1996) 573–603. [CrossRef] [MathSciNet]
  15. H. Koch and N. Tzvetkov, On the local well-posedness of the Benjamin-Ono equation in Formula . Int. Math. Res. Not. 26 (2003) 1449–1464. [CrossRef]
  16. Y. Matsuno and D.J. Kaup, Initial value problem of the linearized Benjamin-Ono equation and its applications. J. Math. Phys. 38 (1997) 5198–5224. [CrossRef] [MathSciNet]
  17. S. Micu, On the controllability of the linearized Benjamin-Bona-Mahony equation. SIAM J. Control Optim. 39 (2001) 1677–1696. [CrossRef] [MathSciNet]
  18. H. Ono, Algebraic solitary waves in stratified fluids. J. Phys. Soc. Japan 39 (1975) 1082–1091. [CrossRef] [MathSciNet]
  19. A. Pazy. Semigroups of linear operators and applications to partial differential equations. Springer-Verlag, New York, Appl. Math. Sci. 44 (1983).
  20. G. Perla-Menzala, F. Vasconcellos and E. Zuazua. Stabilization of the Korteweg-de Vries equation with localized damping. Quart. Appl. Math. 60 (2002) 111–129. [MathSciNet]
  21. G. Ponce, On the global well-posedness of the Benjamin-Ono equation. Diff. Integral Equations 4 (1991) 527–542.
  22. L. Rosier, Exact boundary controllability for the Korteweg-de Vries equation on a bounded domain. ESAIM: COCV 2 (1997) 33–55. [CrossRef] [EDP Sciences]
  23. D.L. Russell and B.-Y. Zhang, Controllability and stabilizability of the third order linear dispersion equation on a periodic domain. SIAM J. Cont. Optim. 31 (1993) 659–676. [CrossRef] [MathSciNet]
  24. D.L. Russell and B.-Y. Zhang, Exact controllability and stabilizability of the Korteweg-de Vries equation. Trans. Amer. Math. Soc. 348 (1996) 3643–3672. [CrossRef] [MathSciNet]
  25. T. Tao, Global well-posedness of the Benjamin-Ono equation in Formula , preprint (2003).

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.