Free Access
Issue
ESAIM: COCV
Volume 11, Number 3, July 2005
Page(s) 449 - 472
DOI https://doi.org/10.1051/cocv:2005014
Published online 15 July 2005
  1. H. Attouch, Variational Convergence for Functions and Operators. Applicable Mathematics Series, Pitman Advanced Publishing Program (1984). [Google Scholar]
  2. E.J. Balder, Lectures on Young measures theory and its applications in economics. Workshop di Teoria della Misura e Analisi Reale, Grado, 1997, Rend. Istit. Univ. Trieste 31 Suppl. 1 (2000) 1–69. [Google Scholar]
  3. K. Bhattacharya and R.D. James, A theory of thin films of martinsitic materials with applications to microactuators. J. Mech. Phys. Solids 47 (1999) 531–576. [CrossRef] [MathSciNet] [Google Scholar]
  4. B. Dacorogna, Direct Methods in the Calculus of Variations. Springer-Verlag, Berlin. Appl. Math. Sciences 78 (1989). [Google Scholar]
  5. Dal Maso, An introduction to Γ-convergence. Birkäuser, Boston (1993). [Google Scholar]
  6. I. Fonseca, S. Müller and P. Pedregal, Analysis of concentration and oscillation effects generated by gradients. SIAM J. Math. Anal. 29 (1998) 736–756. [CrossRef] [MathSciNet] [Google Scholar]
  7. L. Freddi and R. Paroni, The energy density of martensitic thin films via dimension reduction. Rapporto di ricerca nFormula del dipartimento di Matematica e Informatica dell'Università di Udine. [Google Scholar]
  8. D. Kinderlehrer and P. Pedregal, Characterization of Young measures generated by gradients. Arch. Rational Mech. Anal. 119 (1991) 329–365. [CrossRef] [MathSciNet] [Google Scholar]
  9. H. Le Dret and A. Raoult, The nonlinear membrane model as Variational limit in nonlinear three-dimensional elasticity. J. Math. Pures Appl., IX. Ser. 74 (1995) 549–578. [Google Scholar]
  10. P. Pedregal, Parametrized measures and variational Principle. Birkhäuser (1997). [Google Scholar]
  11. M.A. Sychev, A new approach to Young measure theory, relaxation and convergence in energy. Ann. Inst. Henri Poincaé 16 (1999) 773–812. [CrossRef] [Google Scholar]
  12. M. Valadier, Young measures. Methods of Nonconvex Analysis, A. Cellina Ed. Springer-Verlag, Berlin. Lect. Notes Math. 1446 (1990) 152–188. [Google Scholar]
  13. M. Valadier, A course on Young measures. Workshop di Teoria della Misura e Analisi Reale, Grado, September 19–October 2, 1993, Rend. Istit. Mat. Univ. Trieste 26 Suppl. (1994) 349–394 [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.