Free Access
Issue
ESAIM: COCV
Volume 11, Number 3, July 2005
Page(s) 426 - 448
DOI https://doi.org/10.1051/cocv:2005013
Published online 15 July 2005
  1. F. Ammar-Khodja, A. Benabdallah, C. Dupaix and I. Kostine, Controllability to the trajectories of phase-field models by one control force. SIAM J. Control. Opt. 42 (2003) 1661–1680. [Google Scholar]
  2. F. Ammar-Khodja, A. Benabdallah and C. Dupaix, Controllability of some reaction-diffusion models by one control force. To appear. [Google Scholar]
  3. S. Anita and V. Barbu, Local exact controllability of a reaction-diffusion system. Diff. Integral Equ. 14 (2001) 577–587. [Google Scholar]
  4. V. Barbu, Exact controllability of the superlinear heat equation. Appl. Math. Optim. 42 (2000) 73–89. [CrossRef] [MathSciNet] [Google Scholar]
  5. V. Barbu, Local controllability of the phase field system. Nonlinear Analysis 50 (2002) 363–372. [CrossRef] [MathSciNet] [Google Scholar]
  6. G. Lebeau and L. Robbiano, Contrôle exact de l'équation de la chaleur. Comm. Partial Diff. Equ. 20 (1995) 335–356. [CrossRef] [Google Scholar]
  7. A. Fursikov and O. Yu. Imanuvilov, Controllability of Evolution Equations. Seoul National University, Korea. Lect. Notes Ser. 34 (1996). [Google Scholar]
  8. E. Fernández-Cara and E. Zuazua, Null and approximate controllability for weakly blowing up semilinear heat equations. Ann. Inst. H. Poincaré, Anal. Non Linéaire 17 (2000) 583–616. [Google Scholar]
  9. O.A. Ladyženskaja, V.A. Solonnikov and N.N. Ural'ceva, Linear and Quasilinear Equations of Parabolic Type. Translations of Mathematical Monographs, AMS 23 (1968). [Google Scholar]
  10. A. Pazy, Semigroups of linear operators and applications to partial differential equations. Springer-Verlag New York (1983). [Google Scholar]
  11. T.I. Seidman, How fast are violent controls? Math. Control Signals Syst. 1 (1988) 89–95. [CrossRef] [Google Scholar]
  12. T.I. Seidman and J. Yong, How fast are violent controls, II? Math Control Signals Syst. 9 (1997) 327–340. [CrossRef] [Google Scholar]
  13. J. Zabczyk, Mathematical Control Theory: An Introduction. Birkhäuser (1992). [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.