Free Access
Volume 11, Number 3, July 2005
Page(s) 357 - 381
Published online 15 July 2005
  1. G. Allaire, Shape optimization by the homogenization method. Springer (2002). [Google Scholar]
  2. S. Antman, Nonlinear Problems of Elasticity. Springer (1995). [Google Scholar]
  3. E. Aranda and P. Pedregal, Constrained envelope for a general class of design problems. DCDS-A, Supplement Volume 2003 (2002) 30–41. [Google Scholar]
  4. E.J. Balder, Lectures on Young Measures. Cahiers de Mathématiques de la Décision No. 9517, CEREMADE, Université Paris IX (1995). [Google Scholar]
  5. J.M. Ball, Convexity conditions and existence theorems in nonlinear elasticity. Arch. Rat. Mech. Anal. 63 (1977) 337–403. [Google Scholar]
  6. J.M. Ball, A version of the fundamental theorem for Young measures, PDE's and continuum models of phase transitions, M. Rascle, D. Serre and M. Slemrod Eds. Springer. Lect. Notes Phys. 344 (1989) 207–215. [Google Scholar]
  7. J.M. Ball, Some open problems in elasticity, in Geometry, Mechanics and Dynamics, P. Newton, P. Holmes, A. Weinstein Eds. Springer (2002) 3–59. [Google Scholar]
  8. J.M. Ball and R.D. James, Finephase mixtures as minimizers of energy. Arch. Rat. Mech. Anal. 100 (1987) 13–52. [CrossRef] [MathSciNet] [Google Scholar]
  9. J.M. Ball and F. Murat, Remarks on Chacon'sbiting lemma. Proc. AMS 107 (1989) 655–663. [Google Scholar]
  10. K. Battacharya and G. Dolzmann, Relaxation of some multi-well problems. Proc. Roy. Soc. Edinb. 131A (2001) 279–320. [Google Scholar]
  11. J.C. Bellido, Explicit computation of the relaxed density coming from a three-dimensional optimal design problem. Non-Lin. Anal. TMA 52 (2002) 1709–1726. [CrossRef] [Google Scholar]
  12. J.C. Bellido and P. Pedregal, Explicit quasiconvexification of some cost functionals depending on derivatives of the state in optimal design. Disc. Cont. Dyn. Syst. A 8 (2002) 967–982. [Google Scholar]
  13. M.P. Bendsoe, Optimization of structural topology, shape and material. Springer (1995). [Google Scholar]
  14. M. Bousselsal and M. Chipot, Relaxation of some functionals of the calculus of variations. Arch. Math. 65 (1995) 316–326. [CrossRef] [MathSciNet] [Google Scholar]
  15. M. Bousselsal and R. Le Dret, Remarks on the quasiconvex envelope of some functions depending on quadratic forms. Boll. Union. Mat. Ital. Sez. B 5 (2002) 469–486. [Google Scholar]
  16. M. Bousselsal and R. Le Dret, Relaxation of functionals involving homogeneous functions and invariance of envelopes. Chinese Ann. Math. Ser. B 23 (2002) 37–52. [CrossRef] [MathSciNet] [Google Scholar]
  17. L. Carbone and R. De Arcangelis, Unbounded functionals in the Calculus of Variations, Representation, Relaxation and Homogenization, Chapman and Hall. CRC, Monographs and Surveys in Pure and Applied Mathematics. Boca Raton, Florida 125 (2002) [Google Scholar]
  18. P.G. Ciarlet, Mathematical Elasticity, Vol. I: Three-dimensional Elasticity. North-Holland, Amsterdam (1987). [Google Scholar]
  19. B. Dacorogna, Direct methods in the Calculus of Variations. Springer (1989). [Google Scholar]
  20. G. Dolzmann, B. Kirchheim, S. Muller and V. Sverak, The two-well problem in three dimensions. Calc. Var. 10 (2000) 21–40. [Google Scholar]
  21. A. Donoso and P. Pedregal, Optimal design of 2-d conducting graded materials by minimizing quadratic functionals in the field. Struct. Opt. (in press) (2004). [Google Scholar]
  22. A. Donoso, Optimal design modelled by Poisson's equation in the presence of gradients in the objective. Ph.D. Thesis, Univ. Castilla-La Mancha (2004). [Google Scholar]
  23. A. Donoso, Numerical simulations in 3-d heat conduction: minimizing the quadratic mean temperature gradient (2004), submitted. [Google Scholar]
  24. D. Faraco, Beltrami operators and microstructure. Ph.D. Thesis, University of Helsinki (2002). [Google Scholar]
  25. I. Fonseca, D. Kinderlehrer and P. Pedregal, Energy functionals depending on elastic strain and chemical composition. Calc. Var. 2 (1994) 283–313. [Google Scholar]
  26. Y. Grabovsky, Optimal design problems for two-phase conducting composites with weakly discontinuous objective functionals. Adv. Appl. Math 27 (2001) 683–704. [Google Scholar]
  27. D. Kinderlehrer and P. Pedregal, Gradient Young measures generated by sequences in Sobolev spaces. J. Geom. Anal. 4 (1994) 59–90. [Google Scholar]
  28. R. Kohn, The relaxation of a double-well energy. Cont. Mech. Thermodyn. 3 (1991) 193–236. [Google Scholar]
  29. R.V. Kohn and G. Strang, Optimal design and relaxation of variational problems, I, II and III. CPAM 39 (1986) 113–137, 139–182 and 353–377. [Google Scholar]
  30. R. Lipton and A. Velo, Optimal design of gradient fields with applications to electrostatics, in Nonlinear Partial Differential Equations Appl., College de France Seminar, D. Cioranescu, F. Murat and J.L Lions Eds. Chapman and Hall/CRCResearch Notes in Mathematics (2000). [Google Scholar]
  31. Ch.B. Morrey, Quasiconvexity and the lower semicontinuity of multiple integrals. Pacific J. Math. 2 (1952) 25–53. [CrossRef] [MathSciNet] [Google Scholar]
  32. Ch.B. Morrey, Multiple Integrals in the Calculus of Variations. Berlin, Springer (1966). [Google Scholar]
  33. P. Pedregal, Parametrized Measures and Variational Principles. Birkhäuser, Basel (1997). [Google Scholar]
  34. P. Pedregal, Variational methods in nonlinear elasticity. SIAM, Philadelphia (2000). [Google Scholar]
  35. P. Pedregal, Constrained quasiconvexification of the square of the gradient of the state in optimal design. QAM 62 (2004) 459–470. [Google Scholar]
  36. P. Pedregal, Optimal design in 2-d conductivity for quadratic functionals in the field, in Proc. NATO Advan. Meeting Non-lin. Homog., Warsaw, Poland, Kluwer (2004) 229–246. [Google Scholar]
  37. P. Pedregal, Optimal design in two-dimensional conductivity for a general cost depending on the field. Arch. Rat. Mech. Anal. (2004) (in press). [Google Scholar]
  38. Y. Reshetnyak, General theorems on semicontinuity and on convergence with a functional. Sibir. Math. 8 (1967) 801–816. [CrossRef] [Google Scholar]
  39. L. Tartar, Remarks on optimal design problems, in Calculus of Variations, Homogenization and Continuum Mechanics, G. Buttazzo, G. Bouchitte and P. Suquet Eds. World Scientific, Singapore (1994) 279–296. [Google Scholar]
  40. L. Tartar, An introduction to the homogenization method in optimal design, Springer. Lect. Notes Math. 1740 (2000) 47–156. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.