Free Access
Volume 11, Number 3, July 2005
Page(s) 382 - 400
Published online 15 July 2005
  1. P.G. Ciarlet, Mathematical Elasticity, Vol. 1: Three-Dimensional Elasticity. Stud. Math. Appl., North-Holland, Amsterdam 20 (1988). [Google Scholar]
  2. S.C. Cowin and D.H. Hegedus, Bone remodeling I: theory of adaptive elasticity. J. Elasticity 6 (1976) 313–326. [CrossRef] [MathSciNet] [Google Scholar]
  3. S.C. Cowin and R.R. Nachlinger, Bone remodeling III: uniqueness and stability in adaptive elasticity theory. J. Elasticity 8 (1978) 285–295. [CrossRef] [MathSciNet] [Google Scholar]
  4. L.C. Evans, Partial Differential Equations. American Mathematical Society, Providence, Rhode Island (1998). [Google Scholar]
  5. I.N. Figueiredo and L. Trabucho, Asymptotic model of a nonlinear adaptive elastic rod. Math. Mech. Solids 9 (2004) 331–354. [CrossRef] [MathSciNet] [Google Scholar]
  6. A. Haraux, How to differentiate the projection on a convex set in Hilbert space. Some applications to variational inequalities. J. Math. Soc. Japan 29 (1977) 615–631. [CrossRef] [MathSciNet] [Google Scholar]
  7. D.H. Hegedus and S.C. Cowin, Bone remodeling II: small strain adaptive elasticity. J. Elasticity 6 (1976) 337–352. [CrossRef] [MathSciNet] [Google Scholar]
  8. F. Mignot, Contrôle dans les inéquations variationnelles elliptiques. J. Funct. Anal. 22 (1976) 130–185. [CrossRef] [Google Scholar]
  9. J. Monnier and L. Trabucho, An existence and uniqueness result in bone remodeling theory. Comput. Methods Appl. Mech. Engrg. 151 (1998) 539–544. [CrossRef] [MathSciNet] [Google Scholar]
  10. M. Pierre and J. Sokolowski, Differentiability of projection and applications, E. Casas Ed. Marcel Dekker, New York. Lect. Notes Pure Appl. Math. 174 (1996) 231–240. [Google Scholar]
  11. M. Rao and J. Sokolowski, Sensitivity analysis of unilateral problems in Formula and applications. Numer. Funct. Anal. Optim. 14 (1993) 125–143. [CrossRef] [MathSciNet] [Google Scholar]
  12. J. Sokolowski and J.-P. Zolesio, Introduction to Shape Optimization, Shape Sensitivity Analysis. Springer-Verlag, New York, Springer Ser. Comput. Math. 16 (1992). [Google Scholar]
  13. L. Trabucho and J.M. Viaño, Mathematical Modelling of Rods, P.G. Ciarlet and J.L Lions Eds. North-Holland, Amsterdam, Handb. Numer. Anal. 4 (1996) 487–974. [Google Scholar]
  14. T. Valent, Boundary Value Problems of Finite Elasticity. Springer Tracts Nat. Philos. 31 (1988). [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.