Free Access
Issue
ESAIM: COCV
Volume 11, Number 4, October 2005
Page(s) 691 - 719
DOI https://doi.org/10.1051/cocv:2005024
Published online 15 September 2005
  1. R.C. Arkin, Behavior-Based Robotics. Cambridge, Cambridge University Press (1998). [Google Scholar]
  2. Y. Asami, A note on the derivation of the first and second derivative of objective functions in geographical optimization problems. J. Faculty Engineering, The University of Tokio (B) XLI (1991) 1–13. [Google Scholar]
  3. R.G. Bartle, The Elements of Integration and Lebesgue Measure, 1st edn. Wiley-Interscience (1995). [Google Scholar]
  4. M. de Berg, M. van Kreveld and M. Overmars, Computational Geometry: Algorithms and Applications. New York, Springer-Verlag (1997). [Google Scholar]
  5. S. Boyd and L. Vandenberghe, Convex Optimization. Cambridge,Cambridge University Press (2004). [Google Scholar]
  6. A.J. Chorin and J.E. Marsden, A Mathematical Introduction to Fluid Mechanics. 3rd edn., Ser. Texts in Applied Mathematics. New York, Springer-Verlag 4 (1994). [Google Scholar]
  7. J. Cortés and F. Bullo, Coordination and geometric optimization via distributed dynamical systems. SIAM J. Control Optim. (June 2004), to appear. [Google Scholar]
  8. J. Cortés, S. Martínez, T. Karatas and F. Bullo, Coverage control for mobile sensing networks. IEEE Trans. Robotics Automat. 20 (2004) 243–255. [CrossRef] [Google Scholar]
  9. R. Diestel, Graph Theory. 2nd edn., Ser. Graduate Texts in Mathematics. New York, Springer-Verlag 173 (2000). [Google Scholar]
  10. Z. Drezner and H.W. Hamacher, Eds., Facility Location: Applications and Theory. New York, Springer-Verlag (2001). [Google Scholar]
  11. Q. Du, V. Faber and M. Gunzburger, Centroidal Voronoi tessellations: applications and algorithms. SIAM Rev. 41 (1999) 637–676. [CrossRef] [MathSciNet] [Google Scholar]
  12. H. Edelsbrunner and N.R. Shah, Triangulating topological spaces. Internat. J. Comput. Geom. Appl. 7 (1997) 365–378. [CrossRef] [MathSciNet] [Google Scholar]
  13. J. Gao, L.J. Guibas, J. Hershberger, L. Zhang and A. Zhu, Geometric spanner for routing in mobile networks, in ACM International Symposium on Mobile Ad-Hoc Networking & Computing (MobiHoc). Long Beach, CA (Oct. 2001) 45–55. [Google Scholar]
  14. R.M. Gray and D.L. Neuhoff, Quantization. IEEE Trans. Inform. Theory 44 (1998) 2325–2383. Commemorative Issue 1948–1998. [CrossRef] [MathSciNet] [Google Scholar]
  15. U. Helmke and J. Moore, Optimization and Dynamical Systems. New York, Springer-Verlag (1994). [Google Scholar]
  16. A. Jadbabaie, J. Lin and A.S. Morse, Coordination of groups of mobile autonomous agents using nearest neighbor rules. IEEE Trans. Automat. Control 48 (2003) 988–1001. [CrossRef] [MathSciNet] [Google Scholar]
  17. J.W. Jaromczyk and G.T. Toussaint, Relative neighborhood graphs and their relatives. Proc. of the IEEE 80 (1992) 1502–1517. [CrossRef] [Google Scholar]
  18. H.K. Khalil, Nonlinear Systems. Englewood Cliffs, Prentice Hall (1995). [Google Scholar]
  19. J.P. LaSalle, The Stability and Control of Discrete Processes. Ser. Applied Mathematical Sciences. New York, Springer-Verlag 62 (1986). [Google Scholar]
  20. X.-Y. Li, Algorithmic, geometric and graphs issues in wireless networks. Wireless Communications and Mobile Computing 3 (2003) 119–140. [CrossRef] [Google Scholar]
  21. D.G. Luenberger, Linear and Nonlinear Programming. Reading, Addison-Wesley (1984). [Google Scholar]
  22. J. Marshall, M. Broucke and B. Francis, Formations of vehicles in cyclic pursuit. IEEE Trans. Automat. Control 49 (2004) 1963–1974. [CrossRef] [MathSciNet] [Google Scholar]
  23. A. Okabe, B. Boots, K. Sugihara and S.N. Chiu, Spatial Tessellations: Concepts and Applications of Voronoi Diagrams. 2nd edn., Ser. Wiley Series in Probability and Statistics. New York, John Wiley & Sons (2000). [Google Scholar]
  24. A. Okabe and A. Suzuki, Locational optimization problems solved through Voronoi diagrams. European J. Oper. Res. 98 (1997) 445–56. [CrossRef] [Google Scholar]
  25. A. Okubo, Dynamical aspects of animal grouping: swarms, schools, flocks and herds. Adv. Biophysics 22 (1986) 1–94. [CrossRef] [PubMed] [Google Scholar]
  26. R. Olfati-Saber and R.M. Murray, Consensus problems in networks of agents with switching topology and time-delays. IEEE Trans. Automat. Control 49 (2004) 1520–1533. [CrossRef] [MathSciNet] [Google Scholar]
  27. K.M. Passino, Biomimicry for Optimization, Control, and Automation. New York, Springer-Verlag (2004). [Google Scholar]
  28. C.W. Reynolds, Flocks, herds, and schools: A distributed behavioral model. Computer Graphics 21 (1987) 25–34. [NASA ADS] [CrossRef] [EDP Sciences] [MathSciNet] [PubMed] [Google Scholar]
  29. K. Rose, Deterministic annealing for clustering, compression, classification, regression, and related optimization problems. Proc. of the IEEE 80 (1998) 2210–2239. [CrossRef] [Google Scholar]
  30. A.R. Teel, Nonlinear systems: discrete-time stability analysis. Lecture Notes, University of California at Santa Barbara (2004). [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.