Free Access
Issue
ESAIM: COCV
Volume 12, Number 1, January 2006
Page(s) 93 - 119
DOI https://doi.org/10.1051/cocv:2005029
Published online 15 December 2005
  1. F. Abergel and R. Temam, On some control problems in fluid mechanics. Theoret. Comput. Fluid Dynam. 1 (1990) 303–325. [CrossRef] [EDP Sciences] [Google Scholar]
  2. R.A. Adams, Sobolev spaces. Academic Press, San Diego (1978). [Google Scholar]
  3. N. Arada, J.-P. Raymond and F. Tröltzsch, On an augmented Lagrangian SQP method for a class of optimal control problems in Banach spaces. Comput. Optim. Appl. 22 (2002) 369–398. [CrossRef] [MathSciNet] [Google Scholar]
  4. J.F. Bonnans, Second-order analysis for control constrained optimal control problems of semilinear elliptic equations. Appl. Math. Optim. 38 (1998) 303–325. [CrossRef] [MathSciNet] [Google Scholar]
  5. J.F. Bonnans and H. Zidani, Optimal control problems with partially polyhedric constraints. SIAM J. Control Optim. 37 (1999) 1726–1741. [CrossRef] [MathSciNet] [Google Scholar]
  6. H. Brezis, Analyse fonctionelle. Masson, Paris (1983). [Google Scholar]
  7. E. Casas, An optimal control problem governed by the evolution Navier-Stokes equations, in Optimal control of viscous flows. Frontiers in applied mathematics, S.S. Sritharan Ed., SIAM, Philadelphia (1993). [Google Scholar]
  8. E. Casas and M. Mateos, Second order optimality conditions for semilinear elliptic control problems with finitely many state constraints. SIAM J. Control Optim. 40 (2002) 1431–1454. [CrossRef] [MathSciNet] [Google Scholar]
  9. E. Casas and M. Mateos, Uniform convergence of the FEM. Applications to state constrained control problems. Comp. Appl. Math. 21 (2002) 67–100. [Google Scholar]
  10. E. Casas, F. Tröltzsch and A. Unger, Second-order sufficient optimality conditions for a nonlinear elliptic control problem. J. Anal. Appl. 15 (1996) 687–707. [Google Scholar]
  11. E. Casas, F. Tröltzsch and A. Unger, Second-order sufficient optimality conditions for some state-constrained control problems of semilinear elliptic equations. SIAM J. Control Optim. 38 (2000) 1369–1391. [CrossRef] [MathSciNet] [Google Scholar]
  12. P. Constantin and C. Foias, Navier-Stokes equations. The University of Chicago Press, Chicago (1988). [Google Scholar]
  13. R. Dautray and J.L. Lions, Evolution problems I, Mathematical analysis and numerical methods for science and technology 5. Springer, Berlin (1992). [Google Scholar]
  14. M. Desai and K. Ito, Optimal controls of Navier-Stokes equations. SIAM J. Control Optim. 32 (1994) 1428–1446. [CrossRef] [MathSciNet] [Google Scholar]
  15. A.L. Dontchev, W.W. Hager, A.B. Poore and B. Yang, Optimality, stability, and convergence in optimal control. Appl. Math. Optim. 31 (1995) 297–326. [CrossRef] [MathSciNet] [Google Scholar]
  16. J.C. Dunn, On second-order sufficient conditions for structured nonlinear programs in infinite-dimensional function spaces, in Mathematical programming with data perturbations, A. Fiacco Ed., Marcel Dekker (1998) 83–107. [Google Scholar]
  17. H.O. Fattorini and S. Sritharan, Necessary and sufficient for optimal controls in viscous flow problems. Proc. Roy. Soc. Edinburgh 124 (1994) 211–251. [Google Scholar]
  18. M.D. Gunzburger Ed., Flow control. Springer, New York (1995). [Google Scholar]
  19. M.D. Gunzburger and S. Manservisi, The velocity tracking problem for Navier-Stokes flows with bounded distributed controls. SIAM J. Control Optim. 37 (1999) 1913–1945. [CrossRef] [MathSciNet] [Google Scholar]
  20. M.D. Gunzburger and S. Manservisi, Analysis and approximation of the velocity tracking problem for Navier-Stokes flows with distributed control. SIAM J. Numer. Anal. 37 (2000) 1481–1512. [CrossRef] [MathSciNet] [Google Scholar]
  21. M. Hinze, Optimal and instantaneous control of the instationary Navier-Stokes equations. Habilitation, TU Berlin (2002). [Google Scholar]
  22. M. Hinze and K. Kunisch, Second-order methods for optimal control of time-dependent fluid flow. SIAM J. Control Optim. 40 (2001) 925–946. [CrossRef] [MathSciNet] [Google Scholar]
  23. H. Maurer and J. Zowe, First- and second-order conditions in infinite-dimensional programming problems. Math. Programming 16 (1979) 98–110. [CrossRef] [MathSciNet] [Google Scholar]
  24. H.D. Mittelmann and F. Tröltzsch, Sufficient optimality in a parabolic control problem, in Trends in Industrial and Applied Mathematics, A.H. Siddiqi and M. Kocvara Ed., Dordrecht, Kluwer (2002) 305–316. [Google Scholar]
  25. J.-P. Raymond and F. Tröltzsch, Second order sufficient optimality conditions for nonlinear parabolic control problems with state constraints. Discrete Contin. Dynam. Syst. 6 (2000) 431–450. [CrossRef] [MathSciNet] [Google Scholar]
  26. T. Roubíček and F. Tröltzsch, Lipschitz stability of optimal controls for the steady-state Navier-Stokes equations. Control Cybernet. 32 (2002) 683–705. [Google Scholar]
  27. S. Sritharan, Dynamic programming of the Navier-Stokes equations. Syst. Control Lett. 16 (1991) 299–307. [CrossRef] [Google Scholar]
  28. R. Temam, Navier-Stokes equations. North Holland, Amsterdam (1979). [Google Scholar]
  29. F. Tröltzsch, Lipschitz stability of solutions of linear-quadratic parabolic control problems with respect to perturbations. Dyn. Contin. Discrete Impulsive Syst. 7 (2000) 289–306. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.