Free Access
Issue
ESAIM: COCV
Volume 12, Number 1, January 2006
Page(s) 35 - 51
DOI https://doi.org/10.1051/cocv:2005031
Published online 15 December 2005
  1. M.A. Akcoglu and U. Krengel, Ergodic theorems for superadditive processes. J. Reine Angew. Math. 323 (1981) 53–67. [CrossRef] [MathSciNet] [Google Scholar]
  2. F. Alvarez and J.-P. Mandallena, Homogenization of multiparameter integrals. Nonlinear Anal. 50 (2002) 839–870. [CrossRef] [MathSciNet] [Google Scholar]
  3. H. Attouch, Variational convergence for functions and operators. Pitman (1984). [Google Scholar]
  4. J.M. Ball and R.D. James, Fine phase mixtures as minimizers of energy. Arch. Rat. Mech. Anal. 100 (1987) 13–52. [CrossRef] [MathSciNet] [Google Scholar]
  5. K. Bhattacharya and R. Kohn, Elastic energy minimization and the recoverable strains of polycristalline shape-memory materials. Arch. Rat. Mech. Anal. 139 (1997) 99–180. [Google Scholar]
  6. A. Braides, Homogenization of some almost periodic coercive functional. Rend. Accad. Naz. Sci. 103 (1985) 313–322. [Google Scholar]
  7. A. Braides and A. Defranceschi, Homogenization of multiple integrals. Oxford University Press (1998). [Google Scholar]
  8. C. Castaing, P. Raynaud de Fitte and M. Valadier, Young measures on topological spaces with applications in control theory and probability theory. Mathematics and Its Applications, Kluwer, The Netherlands (2004). [Google Scholar]
  9. C. Castaing and M. Valadier, Convex analysis and measurable multifunctions. Lect. Notes Math. 580 (1977). [Google Scholar]
  10. B. Dacorogna, Quasiconvexity and relaxation of nonconvex variational problems. J. Funct. Anal. 46 (1982) 102–118. [CrossRef] [MathSciNet] [Google Scholar]
  11. G. Dal maso, An introduction to Γ-convergence. Birkhäuser (1993). [Google Scholar]
  12. G. Dal maso and L. Modica, Nonlinear stochastic homogenization. J. Reine Angew. Math. 363 (1986) 27–43. [Google Scholar]
  13. L.C. Evans, Weak convergence methods for nonlinear partial differential equations. CBMS Amer. Math. Soc. 74 (1990). [Google Scholar]
  14. I. Fonseca, S. Müller and P. Pedregal, Analysis of concentration and oscillation effects generated by gradients. SIAM J. Math. Anal. 29 (1998) 736–756. [CrossRef] [MathSciNet] [Google Scholar]
  15. D. Kinderlherer and P. Pedregal, Characterization of Young measure generated by gradients. Arch. Rat. Mech. Anal. 115 (1991) 329–365. [Google Scholar]
  16. D. Kinderlherer and P. Pedregal, Gradient Young measures generated by sequences in Sobolev spaces. J. Geom. Anal. 4 (1994) 59–89. [Google Scholar]
  17. C. Licht and G. Michaille, Global-local subadditive ergodic theorems and application to homogenization in elasticity. Ann. Math. Blaise Pascal 9 (2002) 21–62. [MathSciNet] [Google Scholar]
  18. P. Marcellini, Periodic solutions and homogenization of nonlinear variational problems. Annali Mat. Pura Appl. 117 (1978) 139–152. [CrossRef] [MathSciNet] [Google Scholar]
  19. S. Müller, Homogenization of nonconvex integral functionals and cellular elastic materials. Arch. Rat. Mech. Anal. 100 (1987) 189–212. [Google Scholar]
  20. P. Pedregal, Parametrized measures and variational principles. Birkhäuser (1997). [Google Scholar]
  21. P. Pedregal, Γ-convergence through Young meaasures. SIAM J. Math. Anal. 36 (2004) 423–440. [CrossRef] [MathSciNet] [Google Scholar]
  22. M. Valadier, Young measures. Lect. Notes Math. 1446 (1990) 152–188. [Google Scholar]
  23. M. Valadier, A course on Young measures. Rend. Istit. Mat. Univ. Trieste 26 (1994) Suppl. 349–394. [Google Scholar]
  24. W.P. Ziemer, Weakly differentiable functions. Springer (1989). [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.