Free Access
Issue
ESAIM: COCV
Volume 12, Number 2, April 2006
Page(s) 350 - 370
DOI https://doi.org/10.1051/cocv:2006002
Published online 22 March 2006
  1. J.-P. Aubin, A. Cellina, Differential Inclusions. Springer-Verlag, Berlin (1984). [Google Scholar]
  2. J.-P. Aubin, H. Frankowska, Set-Valued Analysis. Birkhäuser, Boston (1990). [Google Scholar]
  3. M. Bardi, I. Capuzzo Dolcetta, Optimal control and viscosity solutions of Hamilton–Jacobi equations. Birkhäuser, Boston (1997). [Google Scholar]
  4. M. Bardi, M. Falcone, An approximation scheme for the minimum time function. SIAM J. Control Optim. 28 (1990) 950–965. [CrossRef] [MathSciNet] [Google Scholar]
  5. A. Bressan, On two conjectures by Hájek. Funkcial. Ekvac. 23 (1980) 221–227. [MathSciNet] [Google Scholar]
  6. P. Cannarsa, P. Cardaliaguet, Perimeter estimates for the reachable set of control problems. J. Convex. Anal. (to appear). [Google Scholar]
  7. P. Cannarsa, C. Pignotti, C. Sinestrari, Semiconcavity for optimal control problems with exit time. Discrete Contin. Dynam. Syst. 6 (2000) 975–997. [CrossRef] [MathSciNet] [Google Scholar]
  8. P. Cannarsa, C. Sinestrari, Convexity properties of the minimum time function. Calc. Var. 3 (1995) 273–298. [CrossRef] [MathSciNet] [Google Scholar]
  9. P. Cannarsa, C. Sinestrari, Semiconcave functions, Hamilton-Jacobi equations and optimal control. Birkhäuser, Boston (2004). [Google Scholar]
  10. F.H. Clarke, Optimization and nonsmooth analysis. Wiley, New York (1983). [Google Scholar]
  11. R. Conti, Processi di controllo lineari in Formula . Quad. Unione Mat. Italiana 30, Pitagora, Bologna (1985). [Google Scholar]
  12. M.C. Delfour, J.-P. Zolésio, Shape analysis via oriented distance functions. J. Funct. Anal. 123 (1994) 129–201. [CrossRef] [MathSciNet] [Google Scholar]
  13. H. Frankowska, B. Kaskosz, Linearization and boundary trajectories of nonsmooth control systems. Canad. J. Math. 40 (1988) 589–609. [CrossRef] [MathSciNet] [Google Scholar]
  14. H. Hermes, J.P. LaSalle, Functional analysis and time optimal control. Academic Press, New York (1969). [Google Scholar]
  15. E.B. Lee, L. Markus, Foundations of optimal control theory. John Wiley & Sons Inc., New York (1967). [Google Scholar]
  16. S. Lojasiewicz Jr., A. Pliś, R. Suarez, Necessary conditions for a nonlinear control system. J. Differ. Equ., 59, 257–265. [Google Scholar]
  17. N.N. Petrov, On the Bellman function for the time-optimal process problem. J. Appl. Math. Mech. 34 (1970) 785–791. [CrossRef] [MathSciNet] [Google Scholar]
  18. A. Pliś, Accessible sets in control theory. Int. Conf. on Diff. Eqs., Academic Press (1975) 646–650. [Google Scholar]
  19. R.T. Rockafellar, R.J.-B. Wets, Variational analysis. Springer-Verlag, Berlin (1998). [Google Scholar]
  20. C. Sinestrari, Semiconcavity of the value function for exit time problems with nonsmooth target. Communications on Pure and Applied Analysis. Commun. Pure Appl. Anal. 3 (2004) 757–774. [CrossRef] [MathSciNet] [Google Scholar]
  21. V.M. Veliov, Lipschitz continuity of the value function in optimal control. J. Optim. Theory Appl. 94 (1997) 335–363. [CrossRef] [MathSciNet] [Google Scholar]
  22. P. Wolenski, Y. Zhuang, Proximal analysis and the minimal time function. SIAM J. Control Optim. 36 (1998) 1048–1072. [CrossRef] [MathSciNet] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.