Free Access
Issue |
ESAIM: COCV
Volume 12, Number 2, April 2006
|
|
---|---|---|
Page(s) | 271 - 293 | |
DOI | https://doi.org/10.1051/cocv:2006005 | |
Published online | 22 March 2006 |
- J.-P. Aubin and A. Cellina, Differential Inclusions. Springer, Berlin (1984). [Google Scholar]
- J.-P. Aubin and H. Frankowska, Set-Valued Analysis. Birkhäuser, Boston (1990). [Google Scholar]
- A. Auslender and M. Teboulle, Asymptotic Cones and Functions in Optimization and Variational Inequalities. Springer, Berlin (2003). [Google Scholar]
- R.W. Cottle, J.S. Pang and R.E. Stone, The Linear Complementarity Problem. Academic Press, New York (1992). [Google Scholar]
- J.P. Crouzeix, Pseudomonotone variational inequality problems: Existence of solutions. Math. Program. 78 (1997) 305–314. [Google Scholar]
- A. Daniilidis and N. Hadjisavvas, Coercivity conditions and variational inequalities. Math. Program. 86 (1999) 433–438. [CrossRef] [MathSciNet] [Google Scholar]
- F. Flores-Bazán, Existence theorems for generalized noncoercive equilibrium problems: the quasi-convex case. SIAM J. Optim. 11 (2000) 675–690. [CrossRef] [MathSciNet] [Google Scholar]
- F. Flores-Bazán, Existence theory for finite dimensional pseudomonotone equilibrium problems. Acta Appl. Math. 77 (2003) 249–297. [CrossRef] [MathSciNet] [Google Scholar]
- F. Flores-Bazán and R. López, The linear complementarity problem under asymptotic analysis. Math. Oper. Res. 30 (2005) 73–90. [CrossRef] [MathSciNet] [Google Scholar]
- C.B. García, Some classes of matrices in linear complementarity theory. Math. Program. 5 (1973) 299–310. [CrossRef] [Google Scholar]
- S.M. Gowda, Complementarity problems over locally compact cones. SIAM J. Control Optim. 27 (1989) 836–841. [CrossRef] [MathSciNet] [Google Scholar]
- S.M. Gowda and J.-S. Pang, The basic theorem of complementarity revisited. Math. Program. 58 (1993) 161–177. [CrossRef] [Google Scholar]
- S.M. Gowda and J.-S. Pang, Some existence results for multivalued complementarity problems. Math. Oper. Res. 17 (1992) 657–669. [CrossRef] [MathSciNet] [Google Scholar]
- G. Isac, The numerical range theory and boundedness of solutions of the complementarity problem. J. Math. Anal. Appl. 143 (1989) 235–251. [CrossRef] [MathSciNet] [Google Scholar]
- S. Karamardian, The complementarity problem. Math. Program. 2 (1972) 107–129. [CrossRef] [Google Scholar]
- S. Karamardian, An existence theorem for the complementarity problem. J. Optim. Theory Appl. 19 (1976) 227–232. [CrossRef] [Google Scholar]
- O.L. Mangasarian and L. McLinden, Simple bounds for solutions of monotone complementarity problems and convex programs. Math. Program. 32 (1985) 32–40. [CrossRef] [Google Scholar]
- J.J. Moré, Classes of functions and feasibility conditions in nonlinear complementarity problems. Math. Program. 6 (1974) 327–338. [CrossRef] [Google Scholar]
- J.J. Moré, Coercivity conditions in nonlinear complementarity problems. SIAM Rev. 17 (1974) 1–16. [Google Scholar]
- J. Parida and A. Sen, Duality and existence theory for nondifferenciable programming. J. Optim. Theory Appl. 48 (1986) 451–458. [CrossRef] [MathSciNet] [Google Scholar]
- J. Parida and A. Sen, A class of nonlinear complementarity problems for multifunctions. J. Optim. Theory Appl. 53 (1987) 105–113. [CrossRef] [MathSciNet] [Google Scholar]
- J. Parida and A. Sen, A variational-like inequality for multifunctions with applications. J. Math. Anal. Appl. 124 (1987) 73–81. [CrossRef] [MathSciNet] [Google Scholar]
- R.T. Rockafellar and R.J.-B. Wets, Variational Analysis. Springer, Berlin (1998). [Google Scholar]
- R. Saigal, Extension of the generalized complementarity problem. Math. Oper. Res. 1 (1976) 260–266. [CrossRef] [MathSciNet] [Google Scholar]
- Y. Zhao, Existence of a solution to nonlinear variational inequality under generalized positive homogeneity. Oper. Res. Lett. 25 (1999) 231–239. [CrossRef] [MathSciNet] [Google Scholar]
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.