Free Access
Volume 12, Number 2, April 2006
Page(s) 253 - 270
Published online 22 March 2006
  1. E. Aranda and P. Pedregal, On the computation of the rank-one convex hull of a function. SIAM J. Sci. Comput. 22 (2000) 1772–1790 (electronic). [CrossRef] [MathSciNet] [Google Scholar]
  2. S. Aubry, M. Fago and M. Ortiz, A constrained sequential-lamination algorithm for the simulation of sub-grid microstructure in martensitic materials. Comput. Methods Appl. Mech. Engrg. 192 (2003) 2823–2843. [CrossRef] [MathSciNet] [Google Scholar]
  3. M. Chlebík and B. Kirchheim, Rigidity for the four gradient problem. J. Reine Angew. Math. 551 (2002) 1–9. [MathSciNet] [Google Scholar]
  4. B. Dacorogna, Direct methods in the calculus of variations. Applied Mathematical Sciences, Springer-Verlag, Berlin 78 (1989). [Google Scholar]
  5. G. Dolzmann, Numerical computation of rank-one convex envelopes. SIAM J. Numer. Anal. 36 (1999) 1621–1635 (electronic). [CrossRef] [MathSciNet] [Google Scholar]
  6. Da.R. Grayson and M.E. Stillman, Macaulay 2, a software system for research in algebraic geometry. Available at [Google Scholar]
  7. J. Harris, Algebraic geometry. Springer-Verlag, New York (1995). A first course, Corrected reprint of the 1992 original. [Google Scholar]
  8. B. Kirchheim, Rigidity and geometry of microstructures. Lecture notes 16/2003, Max Planck Institute for Mathematics in the Sciences, Leipzig (2003). [Google Scholar]
  9. B. Kirchheim, S. Müller and V. Šverák, Studying nonlinear pde by geometry in matrix space, in Geometric analysis and nonlinear partial differential equations. Springer, Berlin (2003) 347–395. [Google Scholar]
  10. C.-F. Kreiner, Algebraic methods for convexity notions in the calculus of variations. Master's thesis, Technische Universität München, Zentrum Mathematik (2003). [Google Scholar]
  11. C.-F. Kreiner, J. Zimmer and I. Chenchiah, Towards the efficient computation of effective properties of microstructured materials. Comptes Rendus Mecanique 332 (2004) 169–174. [CrossRef] [Google Scholar]
  12. J. Matoušek and P. Plecháč, On functional separately convex hulls. Discrete Comput. Geom. 19 (1998) 105–130. [CrossRef] [MathSciNet] [Google Scholar]
  13. S. Müller, Variational models for microstructure and phase transitions, in Calculus of variations and geometric evolution problems (Cetraro, 1996). Springer, Berlin, Lect. Notes Math. 1713 (1999) 85–210. [Google Scholar]
  14. S. Müller and V. Šverák, Unexpected solutions of first and second order partial differential equations, in Proceedings of the International Congress of Mathematicians, Vol. II (Berlin, 1998), Extra Vol. II (1998) 691–702. [Google Scholar]
  15. L. Råde and B. Westergren, Mathematics handbook for science and engineering. Springer-Verlag, Berlin, fourth edition (1999). [Google Scholar]
  16. V. Scheffer, Regularity and irregularity of solutions to nonlinear second order elliptic systems of partial differential equations and inequalities. Ph.D. thesis, Princeton University (1974). [Google Scholar]
  17. V. Šverák, Rank-one convexity does not imply quasiconvexity. Proc. Roy. Soc. Edinburgh Sect. A 120 (1992) 185–189. [MathSciNet] [Google Scholar]
  18. L. Székelyhidi Jr, Rank-one convex hulls in Formula . Calc. Var. Partial Differ. Equ. 22 (2005) 253–281. [Google Scholar]
  19. L. Tartar, Some remarks on separately convex functions, in Microstructure and phase transition. Springer, New York, IMA Vol. Math. Appl. 54 (1993) 191–204. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.