Free Access
Issue
ESAIM: COCV
Volume 12, Number 3, July 2006
Page(s) 442 - 465
DOI https://doi.org/10.1051/cocv:2006010
Published online 20 June 2006
  1. V. Barbu, Controllability of parabolic and Navier-Stokes equations. Sci. Math. Jpn 56 (2002) 143–211. [Google Scholar]
  2. A. Doubova, E. Fernández-Cara and M. González-Burgos, On the controllability of the heat equation with nonlinear boundary Fourier conditions. J. Diff. Equ. 196 (2004) 385–417. [CrossRef] [Google Scholar]
  3. C. Fabre, J.P. Puel and E. Zuazua, Approximate controllability of the semilinear heat equation. Proc. Roy. Soc. Edinburgh 125A (1995) 31–61. [Google Scholar]
  4. E. Fernández-Cara and E. Zuazua, The cost of approximate controllability for heat equations: the linear case. Adv. Diff. Equ. 5 (2000) 465–514. [Google Scholar]
  5. A. Fursikov and O.Yu. Imanuvilov, Controllability of Evolution Equations. Lecture Notes no. 34, Seoul National University, Korea, 1996. [Google Scholar]
  6. O.Yu. Imanuvilov and M. Yamamoto, Carleman estimate for a parabolic equation in a Sobolev space of negative order and its applications, Dekker, New York. Lect. Notes Pure Appl. Math. 218 (2001). [Google Scholar]
  7. G. Lebeau and L. Robbiano, Contrôle exacte de l'equation de la chaleur (French). Comm. Partial Differ. Equat. 20 (1995) 335–356. [CrossRef] [Google Scholar]
  8. D.L. Russell, A unified boundary controllability theory for hyperbolic and parabolic partial differential equations. Studies Appl. Math. 52 (1973) 189–211. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.