Free Access
Issue
ESAIM: COCV
Volume 12, Number 4, October 2006
Page(s) 699 - 720
DOI https://doi.org/10.1051/cocv:2006018
Published online 11 October 2006
  1. G. Allaire, Shape optimization by the homogenization method. Springer (2002). [Google Scholar]
  2. G. Allaire, E. Bonnetier, G. Franfort and F. Jouve, Shape optimization by the homogenization method. Numer. Math. 76 (1997) 27–68. [CrossRef] [MathSciNet] [Google Scholar]
  3. G. Allaire and R.V. Kohn, Optimal bounds on the effective behauvior of a mixture of two well-odered elastic materials. Quat. Appl. Math. 51 (1993) 643–674. [Google Scholar]
  4. G. Allaire and R.V. Kohn, Optimal design for minimum weight and compliance in plane stress using extremal microstructures. Europ. J. Mech. A/solids 12 (1993) 839–878. [Google Scholar]
  5. G. Allaire and F. Murat, Homogenization of the Neumann problem with nonisolated holes. Asymptotic Anal. 7 (1993) 81–95. With an appendix written jointly with A.K. Nandakumar. [MathSciNet] [Google Scholar]
  6. J.C. Bellido, Explicit computation of the relaxed density coming from a three-dimensional optimal design prroblem. Nonlinear Analysis TMA 52 (2003) 1709–1726. [CrossRef] [Google Scholar]
  7. J.C. Bellido and P. Pedregal, Optimal design via variational principles: the one-dimensional case. J. Math. Pures Appl. 80 (2000) 245–261. [CrossRef] [Google Scholar]
  8. J.C. Bellido and P. Pedregal, Explicit quasiconvexification for some cost functionals depending on the derivatives of the state in optimal design. DCDS-A 8 (2002) 967–982. [CrossRef] [Google Scholar]
  9. J.C. Bellido and P. Pedregal, Optimal control via variational principles: the three dimensional case. J. Math. Anal. Appl. 287 (2003) 157–176. [CrossRef] [MathSciNet] [Google Scholar]
  10. J.C. Bellido and P. Pedregal, Existence in optimal control with state equation in divergence form via variational principles. J. Convex Anal. 10 (2003) 365–378. [MathSciNet] [Google Scholar]
  11. M.P. Bendsøe and O. Sigmund, Topology optimization, Theory, methods and applications. Springer-Verlag, Berlin (2003). [Google Scholar]
  12. A. Braides, Γ-convergence for beginners, Oxford Lecture Series in Mathematics and its Applications. Oxford University Press, Oxford, 22 (2002). [Google Scholar]
  13. M. Briane, Homogenization in some weakly connected domains. Ricerche Mat. 47 (1998) 51–94. [MathSciNet] [Google Scholar]
  14. M. Briane, Homogenization in general periodically perforated domains by a spectral approach. Calc. Var. Partial Differ. Equat. 15 (2002) 1–24. [CrossRef] [Google Scholar]
  15. A. Cherkaev, Variational methods for structural optimization. Springer (2000). [Google Scholar]
  16. G. Dal Maso, Introduction to Γ-convergence. Birkhäuser, Boston, 1993. [Google Scholar]
  17. I. Fonseca, D. Kinderlehrer and P. Pedregal, Energy functionals depending on elastic strain and chemical composition. Cal. Var. 2 (1994) 283–313. [CrossRef] [MathSciNet] [Google Scholar]
  18. V. Girault and P.A. Raviart, Finite elements methods for Navier-Stokes equations, Theory and Algorithms. Springer-Verlag, Berlin, Heidelberg, New York, Tokyo (1985). [Google Scholar]
  19. S. Müller and V. Šverák, Convex integration for lipschitz mappings and counterexamples for regularity. Technical Report 26, Max-Planck Institute for Mathematics in the Sciences, Leipzig (1999). [Google Scholar]
  20. F. Murat, Contre-exemples pour divers problèmes où le contrôle intervient dans les coefficients. Ann. Mat Pura Appl. 112 (1977) 49–68. [CrossRef] [MathSciNet] [Google Scholar]
  21. P. Pedregal, Parametrized Measures and Variational Principles. Progress in Nonlinear Partial Differential Equations. Birkhäuser (1997). [Google Scholar]
  22. P. Pedregal, Optimal design and constrained quasiconvexity. SIAM J. Math. Anal. 32 (2000) 854–869. [CrossRef] [MathSciNet] [Google Scholar]
  23. P. Pedregal, Constrained quasiconvexification of the square of the gradient of the state in optimal design. Quater. Appl. Math. 62 (2004) 459–470. [Google Scholar]
  24. L. Tartar, Remarks on optimal design problems, in Homogenization and continuum mechanics, G. Buttazzo, G. Bouchitte, and P. Suchet Eds, Singapure World Scientific (1994) 279–296. [Google Scholar]
  25. L. Tartar, An introduction to homogenization method in optimal design. Lect. Notes Math. Springer (2000). [Google Scholar]
  26. V. Šverák, Lower semicontinuity of variational integrals and compesated compactness, in Proc. ICM, S.D. Chatterji Ed., Birkhäuser 2 (1994) 1153–1158. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.