Free Access
Issue
ESAIM: COCV
Volume 12, Number 4, October 2006
Page(s) 721 - 751
DOI https://doi.org/10.1051/cocv:2006019
Published online 11 October 2006
  1. R.A. Abeyaratne, C. Chu and R.D. James, Kinetics of materials with wiggly energies: theory and application to the evolution of twinning microstructures in a Cu-Al-Ni shape. Philos. Mag. Ser. A 73 (1996) 457–497. [CrossRef] [Google Scholar]
  2. G. Alberti and S. Müller, A New Approach to Variational Problems with Multiple Scales. Comm. Pure. Appl. Math. 54 (2001) 761–825. [CrossRef] [MathSciNet] [Google Scholar]
  3. J. Ball and R.D. James, Fine phase mixtures as minimizers of the energy. Arch. Rat. Mech. Anal. 100 (1987) 13–52. [CrossRef] [MathSciNet] [Google Scholar]
  4. J. Ball, R.D. James, Proposed experimental tests of a theory of fine structures and the two-well problem. Philos. Trans. R. Soc. Lond. A 338 (1992) 389–450. [CrossRef] [Google Scholar]
  5. P.W. Bates and J. Xun, Metastable Patterns for the Cahn-Hilliard Equations, Part I. J. Diff. Eq. 111 (1994) 421–457. [CrossRef] [Google Scholar]
  6. J. Carr, M.E. Gurtin and M. Slemrod, Structured Phase Transitions on a Finite Interval. Arch. Rat. Mech. Anal. 86 (1984) 317–351. [CrossRef] [Google Scholar]
  7. J. Carr and R.L. Pego, Metastable Patterns in Solutions of Formula . Comm. Pure Appl. Math. 42 (1989) 523–576. [CrossRef] [MathSciNet] [Google Scholar]
  8. A.G. Khachaturyan, Theory of Structural Transformations in Solids. New York, Wiley-Interscience (1983). [Google Scholar]
  9. R.V. Kohn and S. Müller, Branching of twins near a austenite/twinned-martensite interface. Philos. Mag. Ser. A 66 (1992) 697–715. [CrossRef] [Google Scholar]
  10. R.V. Kohn and S. Müller, Surface energy and microstructure in coherent phase transitions. Comm. Pure Appl. Math. 47 (1994) 405–435. [CrossRef] [MathSciNet] [Google Scholar]
  11. R.V. Kohn and P. Sternberg, Local minimizers and singular perturbations. Proc. Roy. Soc. Edinburgh Sect. A 111 (1989) 69–84. [MathSciNet] [Google Scholar]
  12. S. Müller, Singular perturbations as a selection criterion for periodic minimizing sequences. Calc. Var. 1 (1993) 169–204. [CrossRef] [Google Scholar]
  13. X. Ren, L. Truskinovsky, Finite Scale Microstructures in Nonlocal Elasticity. J. Elasticity 59 (2000) 319–355. [CrossRef] [MathSciNet] [Google Scholar]
  14. X. Ren and J. Wei, On the multiplicity of solutions of two nonlocal variational problems. SIAM J. Math. Anal. 31 (2000) 909–924. [CrossRef] [MathSciNet] [Google Scholar]
  15. X. Ren and J. Wei, On energy minimizers of the diblock copolymer problem. Interfaces Free Bound. 5 (2003) 193–238. [CrossRef] [MathSciNet] [Google Scholar]
  16. L. Truskinovsky and G. Zanzotto, Ericksen's Bar Revisited: Energy Wiggles. J. Mech. Phys. Solids 44 (1996) 1371–1408. [CrossRef] [MathSciNet] [Google Scholar]
  17. A. Vainchtein, T. Healey, P. Rosakis and L. Truskinovsky, The role of the spinodal region in one-dimensional martensitic phase transitions. Physica D 115 (1998) 29–48. [CrossRef] [MathSciNet] [Google Scholar]
  18. N.K. Yip, manuscript (2005). [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.