Free Access
Issue
ESAIM: COCV
Volume 13, Number 1, January-March 2007
Page(s) 120 - 134
DOI https://doi.org/10.1051/cocv:2007007
Published online 14 February 2007
  1. E. Acerbi and N. Fusco, A regularity theorem for minimizers of quasiconvex integrals. Arch. Rational Mech. Anal. 99 (1987) 261–281. [CrossRef] [MathSciNet] [Google Scholar]
  2. E. Acerbi and N. Fusco, Regularity for minimizers of non-quadratic functionals: the case Formula . J. Math. Anal. Appl. 140 (1989) 115–135. [CrossRef] [MathSciNet] [Google Scholar]
  3. J.M. Ball, Convexity conditions and existence theorems in nonlinear elasticity. Arch. Rational Mech. Anal. 63 (1977) 337–403. [NASA ADS] [CrossRef] [EDP Sciences] [MathSciNet] [PubMed] [Google Scholar]
  4. J.M. Ball, Some open problem in elasticity, in Geometry, Mechanics and dynamics, Springer, New York (2002) 3–59. [Google Scholar]
  5. M. Carozza, N. Fusco and G. Mingione, Partial regularity of minimizers of quasiconvex integrals with subquadratic growth. Annali Mat. Pura Appl. 175 (1998) 141–164. [CrossRef] [MathSciNet] [Google Scholar]
  6. M. Carozza and A. Passarelli di Napoli, A regularity theorem for minimizers of quasiconvex integrals the case Formula . Proc. Roy. Soc. Edinburgh 126A (1996) 1181–1199. [Google Scholar]
  7. M. Carozza and A. Passarelli di Napoli, Partial regularity of local minimizers of quasiconvex integrals with sub-quadratic growth. Proc. Roy. Soc Edinburgh 133A (2003) 1249–1262. [CrossRef] [MathSciNet] [Google Scholar]
  8. B. Dacorogna, Direct methods in the calculus of variations. Appl. Math. Sci. 78, Springer Verlag (1989). [Google Scholar]
  9. L.C. Evans, Quasiconvexity and partial regularity in the calculus of variations. Arch. Rational Mech. Anal. 95 (1986) 227–252. [MathSciNet] [Google Scholar]
  10. N. Fusco and J. Hutchinson, Partial regularity in problems motivated by nonlinear elasticity. SIAM J. Math. 22 (1991) 1516–1551. [CrossRef] [MathSciNet] [Google Scholar]
  11. N. Fusco and J. Hutchinson, Partial regularity and everywhere continuity for a model problem from nonlinear elasticity. J. Australian Math. Soc. 57 (1994) 149–157. [CrossRef] [Google Scholar]
  12. M. Giaquinta, Multiple integrals in the calculus of variations and nonlinear elliptic systems. Ann. Math. Stud. 105 Princeton Univ. Press (1983). [Google Scholar]
  13. M. Giaquinta and G. Modica, Partial regularity of minimizers of quasiconvex integrals. Ann. Inst. H. Poincaré, Analyse non linéaire 3 (1986) 185–208. [Google Scholar]
  14. E. Giusti, Metodi diretti in calcolo delle variazioni. U.M.I. (1994). [Google Scholar]
  15. J. Kristensen and A. Taheri, Partial regularity of strong local minimizers in the multidimensional calculus of variations. Arch. Rational Mech. Anal. 170 (2003) 63–89. [CrossRef] [MathSciNet] [Google Scholar]
  16. A. Passarelli di Napoli, A regularity result for a class of polyconvex functionals. Ricerche di Matematica XLVIII (1999) 379–393. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.