Free Access
Volume 13, Number 1, January-March 2007
Page(s) 135 - 162
Published online 14 February 2007
  1. R. Alicandro, A. Braides and M.S. Gelli, Free-discontinuity problems generated by singular perturbation. Proc. Roy. Soc. Edinburgh Sect. A 6 (1998) 1115–1129. [Google Scholar]
  2. R. Alicandro, A. Braides and J. Shah, Free-discontinuity problems via functionals involving the L1-norm of the gradient and their approximations. Interfaces and free boundaries 1 (1999) 17–37. [CrossRef] [MathSciNet] [Google Scholar]
  3. R. Alicandro and M.S. Gelli, Free discontinuity problems generated by singular perturbation: the n-dimensional case. Proc. Roy. Soc. Edinburgh Sect. A 130 (2000) 449–469. [MathSciNet] [Google Scholar]
  4. L. Ambrosio, A compactness theorem for a new class of functions of bounded variation. Boll. Un. Mat. Ital. B 3 (1989) 857–881. [MathSciNet] [Google Scholar]
  5. L. Ambrosio, N. Fusco and D. Pallara, Functions of Bounded Variation and Free Discontinuity Problems. Oxford University Press (2000). [Google Scholar]
  6. L. Ambrosio and V.M. Tortorelli, Approximation of functionals depending on jumps by elliptic functionals via Formula -convergence. Comm. Pure Appl. Math. XLIII (1990) 999–1036. [Google Scholar]
  7. L. Ambrosio and V.M. Tortorelli, On the approximation of free discontinuity problems. Boll. Un. Mat. Ital. B (7) VI (1992) 105–123. [Google Scholar]
  8. G. Bouchitté, A. Braides and G. Buttazzo, Relaxation results for some free discontinuity problems. J. Reine Angew. Math. 458 (1995) 1–18. [MathSciNet] [Google Scholar]
  9. B. Bourdin and A. Chambolle, Implementation of an adaptive finite-element approximation of the Mumford-Shah functional. Numer. Math. 85 (2000) 609–646. [CrossRef] [MathSciNet] [Google Scholar]
  10. A. Braides. Approximation of free-discontinuity problems. Lect. Notes Math. 1694, Springer Verlag, Berlin (1998). [Google Scholar]
  11. A. Braides and A. Garroni, On the non-local approximation of free-discontinuity problems. Comm. Partial Differential Equations 23 (1998) 817–829. [Google Scholar]
  12. A. Braides and G. Dal Maso, Non-local approximation of the Mumford-Shah functional. Calc. Var. 5 (1997) 293–322. [Google Scholar]
  13. A. Chambolle and G. Dal Maso, Discrete approximation of the Mumford-Shah functional in dimension two. ESAIM: M2AN 33 (1999) 651–672. [Google Scholar]
  14. G. Cortesani, Sequence of non-local functionals which approximate free-discontinuity problems. Arch. Rational Mech. Anal. 144 (1998) 357–402. [Google Scholar]
  15. G. Cortesani, A finite element approximation of an image segmentation problem. Math. Models Methods Appl. Sci. 9 (1999) 243–259. [CrossRef] [MathSciNet] [Google Scholar]
  16. G. Cortesani and R. Toader, Finite element approximation of non-isotropic free-discontinuity problems. Numer. Funct. Anal. Optim. 18 (1997) 921–940. [CrossRef] [MathSciNet] [Google Scholar]
  17. G. Cortesani and R. Toader, A density result in SBV with respect to non-isotropic energies. Nonlinear Anal. 38 (1999) 585–604. [CrossRef] [MathSciNet] [Google Scholar]
  18. G. Cortesani and R. Toader, Nonlocal approximation of nonisotropic free-discontinuity problems. SIAM J. Appl. Math. 59 (1999) 1507–1519. [CrossRef] [MathSciNet] [Google Scholar]
  19. G. Dal Maso, An Introduction to Formula -Convergence. Birkhäuser, Boston (1993). [Google Scholar]
  20. E. De Giorgi. Free discontinuity problems in calculus of variations, in Frontiers in pure and applied mathematics. A collection of papers dedicated to Jacques-Louis Lions on the occasion of his sixtieth birthday. June 6–10, Paris 1988, Robert Dautray, Ed., Amsterdam, North-Holland Publishing Co. (1991) 55–62. [Google Scholar]
  21. L. Lussardi and E. Vitali, Non-local approximation of free-discontinuity functionals with linear growth: the one-dimensional case. Ann. Mat. Pura Appl. (to appear). [Google Scholar]
  22. M. Morini, Sequences of singularly perturbed functionals generating free-discontinuity problems. SIAM J. Math. Anal. 35 (2003) 759–805. [CrossRef] [MathSciNet] [Google Scholar]
  23. M. Negri, The anisotropy introduced by the mesh in the finite element approximation of the Mumford-Shah functional. Numer. Funct. Anal. Optim. 20 (1999) 957–982. [CrossRef] [MathSciNet] [Google Scholar]
  24. S. Osher and J.A. Sethian, Fronts propagating with curvature-dependent speed: algorithms based on Hamilton-Jacobi formulations. J. Comput. Phys. 79 (1988) 12–49. [NASA ADS] [CrossRef] [MathSciNet] [Google Scholar]
  25. J. Shah, A common framework for curve evolution, segmentation and anisotropic diffusion, in IEEE conference on computer vision and pattern recognition (1996). [Google Scholar]
  26. J. Shah, Uses of elliptic approximations in computer vision. In R. Serapioni and F. Tomarelli, editors, Progress in Nonlinear Differential Equations and Their Applications 25 (1996). [Google Scholar]
  27. L. Simon, Lectures on Geometric Measure Theory. Centre for Mathematical Analysis, Australian National University (1984). [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.