Free Access
Volume 13, Number 2, April-June 2007
Page(s) 343 - 358
Published online 12 May 2007
  1. M. Bildhauer, Convex variational problems. Linear, nearly linear and anisotropic growth conditions, Springer-Verlag, Berlin and New York. Lect. Notes Math. 1818 (2003). [Google Scholar]
  2. P. Celada, Existence and regularity of minimizers of non convex functionals depending on u and Formula . J. Math. Anal. Appl. 230 (1999) 30–56. [CrossRef] [MathSciNet] [Google Scholar]
  3. P. Celada and S. Perrotta, Minimizing non convex, multiple integrals: a density result. Proc. Roy. Soc. Edinburgh 130A (2000) 721–741. [Google Scholar]
  4. P. Celada and S. Perrotta, On the minimum problem for nonconvex, multiple integrals of product type. Calc. Var. Partial Differential Equations 12 (2001) 371–398. [CrossRef] [MathSciNet] [Google Scholar]
  5. P. Celada, G. Cupini and M. Guidorzi, A sharp attainment result for nonconvex variational problems. Calc. Var. Partial Differential Equations 20 (2004) 301–328. [CrossRef] [MathSciNet] [Google Scholar]
  6. A. Cellina, On minima of a functional of the gradient: necessary conditions. Nonlinear Anal. 20 (1993) 337–341. [CrossRef] [MathSciNet] [Google Scholar]
  7. A. Cellina, On minima of a functional of the gradient: sufficient conditions. Nonlinear Anal. 20 (1993) 343–347. [CrossRef] [MathSciNet] [Google Scholar]
  8. G. Cupini and A.P. Migliorini, Hölder continuity for local minimizers of a nonconvex variational problem, J. Convex Anal. 10 (2003) 389–408. [Google Scholar]
  9. G. Cupini, M. Guidorzi and E. Mascolo, Regularity of minimizers of vectorial integrals with p-q growth. Nonlinear Anal. 54 (2003) 591–616. [CrossRef] [MathSciNet] [Google Scholar]
  10. G. Dal Maso, An introduction to Formula -convergence, Birkhäuser, Boston. Progr. Nonlinear Differential Equations Appl. 8 (1993). [Google Scholar]
  11. F.S. De Blasi and G. Pianigiani, On the Dirichlet problem for Hamilton-Jacobi equations. A Baire category approach. Nonlinear Differential Equations Appl. 6 (1999) 13–34. [Google Scholar]
  12. L. Esposito, F. Leonetti and G. Mingione, Regularity results for minimizers of irregular integrals with Formula growth. Forum Math. 14 (2002) 245–272. [CrossRef] [MathSciNet] [Google Scholar]
  13. L. Esposito, F. Leonetti and G. Mingione, Sharp regularity for functionals with Formula growth. J. Differential Equations 204 (2004) 5–55. [MathSciNet] [Google Scholar]
  14. I. Fonseca and N. Fusco, Regularity results for anisotropic image segmentation models. Ann. Scuola Norm. Sup. Pisa Cl. Sci. 244 (1997) 463–499. [Google Scholar]
  15. I. Fonseca, N. Fusco and P. Marcellini, An existence result for a nonconvex variational problem via regularity. ESAIM: COCV. 7 (2002) 69–95. [Google Scholar]
  16. G. Friesecke, A necessary and sufficient condition for nonattainment and formation of microstructure almost everywhere in scalar variational problems. Proc. Roy. Soc. Edinburgh Sect. A 124 (1994) 437–471. [MathSciNet] [Google Scholar]
  17. M. Giaquinta and E. Giusti, On the regularity of the minima of variational integrals. Acta Math. 148 (1982) 31–46. [CrossRef] [MathSciNet] [Google Scholar]
  18. M. Giaquinta and E. Giusti, Differentiability of minima of non-differentiable functionals. Invent. Math. 72 (1983) 285–298. [CrossRef] [MathSciNet] [Google Scholar]
  19. M. Giaquinta and G. Modica, Remarks on the regularity of the minimizers of certain degenerate functionals. Manuscripta Math. 57 (1986) 55–99. [CrossRef] [MathSciNet] [Google Scholar]
  20. E. Giusti, Direct methods in the calculus of variations, World Scientific Publishing Co., Inc., River Edge, NJ (2003). [Google Scholar]
  21. J.J. Manfredi, Regularity for minima of functionals with p-growth. J. Differential Equations 76 (1988) 203–212. [CrossRef] [MathSciNet] [Google Scholar]
  22. P. Marcellini, Alcune osservazioni sull'esistenza del minimo di integrali del calcolo delle variazioni senza ipotesi di convessità. Rend. Mat. 13 (1980) 271–281. [MathSciNet] [Google Scholar]
  23. P. Marcellini, A relation between existence of minima for non convex integrals and uniqueness for non strictly convex integrals of the Calculus of Variations, in Mathematical theories of optimization (S. Margherita Ligure (1981)), J.P. Cecconi and T. Zolezzi Eds., Springer, Berlin. Lect. Notes Math. 979 (1983) 216–231. [CrossRef] [Google Scholar]
  24. P. Marcellini, Regularity of minimizers of integrals of the calculus of variations with non standard growth conditions. Arch. Rational Mech. Anal. 105 (1989) 267–284. [MathSciNet] [Google Scholar]
  25. P. Marcellini, Regularity for elliptic equations with general growth conditions. J. Differential Equations 105 (1993) 296–333. [CrossRef] [MathSciNet] [Google Scholar]
  26. M.A. Sychev, Characterization of homogeneous scalar variational problems solvable for all boundary data. Proc. Roy. Soc. Edinburgh Sect. A 130 (2000) 611–631. [MathSciNet] [Google Scholar]
  27. S. Zagatti, Minimization of functionals of the gradient by Baire's theorem. SIAM J. Control Optim. 38 (2000) 384–399. [CrossRef] [MathSciNet] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.