Free Access
Issue
ESAIM: COCV
Volume 13, Number 2, April-June 2007
Page(s) 359 - 377
DOI https://doi.org/10.1051/cocv:2007016
Published online 12 May 2007
  1. M. Bernot, V. Caselles and J.-M. Morel, Are there infinite irregation tree? J. Math. Fluid Mech. 8 (2006) 311–332. [CrossRef] [MathSciNet] [Google Scholar]
  2. A. Brancolini, G. Buttazzo and F. Santambrogio, Path functions over Wasserstein spaces. http://www.calcvar.sns.it/papers/brabutsan04/path.pdf [Google Scholar]
  3. T. De Pauw and R. Hardt, Size minimization and approximating problems. Calc. Var. Partial Differ. Equ. 17 (2003) 405–442. [CrossRef] [Google Scholar]
  4. von C. Ettingshausen, Die Blatt-Skelete der Dikotyledonen. Wien: Staatsdruckerei, Wien (1861). [Google Scholar]
  5. E.N. Gilbert, Minimum cost communication networks. Bell System Tech. J. 46 (1967) 2209–2227. [Google Scholar]
  6. J.M. Harris, J.L. Hist and M.J. Mossinghoff, Combinatorics and graph theory. Springer-verlag (2000). [Google Scholar]
  7. L.J. Hickey, A revised classification of the architecture of dicotyledonous leaves, in Anatomy of the dicotyledons, 2nd edn., Vol. I, Systematic anatomy of the leaves and stem., C.R. Metcalfe, L. Chalk, Eds., Oxford, Clarendon Press (1979) 25–39. [Google Scholar]
  8. F. Maddalena, J.-M. Morel and S. Solimini, A variational model of irrigation patterns. Interfaces Free Bound. 5 (2003) 391–415. [CrossRef] [MathSciNet] [Google Scholar]
  9. R. Melville, Leaf venation patterns and the origin of angiosperms. Nature 224 (1969) 121–125. [CrossRef] [Google Scholar]
  10. R. Melville, The terminology of leaves architecture. Taxon 25 (1976) 549–562. [CrossRef] [Google Scholar]
  11. T. Nelson and N. Dengler, Leaf vascular pattern formation. Plant Cell 9 (1997) 1121–1135. [Google Scholar]
  12. Q. Xia, Optimal paths related to transport problems. Comm. Cont. Math. 5 (2003) 251–279. [Google Scholar]
  13. Q. Xia, Interior regularity of optimal transport paths. Calc. Var. Partial Differ. Equ. 20 (2004) 283–299. [Google Scholar]
  14. Q. Xia, Boundary regularity of optimal transport paths. http://math.ucdavis.edu/~qlxia/Research/boundary.pdf. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.