Free Access
Issue
ESAIM: COCV
Volume 13, Number 2, April-June 2007
Page(s) 396 - 412
DOI https://doi.org/10.1051/cocv:2007015
Published online 12 May 2007
  1. M. Amar and V. De Cicco, Relaxation in BV for a class of functionals without continuity assumptions. NoDEA (to appear). [Google Scholar]
  2. L. Ambrosio, N. Fusco and D. Pallara, Functions of bounded variation and free discontinuity problems. Oxford University Press, New York (2000). [Google Scholar]
  3. G. Bouchitté, I. Fonseca and L. Mascarenhas, A global method for relaxation. Arch. Rat. Mech. Anal. 145 (1998) 51–98. [CrossRef] [Google Scholar]
  4. G. Buttazzo, Semicontinuity, Relaxation and Integral Representation Problems in the Calculus of Variations. Pitman Res. Notes Math., Longman, Harlow (1989). [Google Scholar]
  5. G. Dal Maso, Integral representation on BVFormula of Formula -limits of variational integrals. Manuscripta Math. 30 (1980) 387–416. [CrossRef] [Google Scholar]
  6. G. Dal Maso, An Introduction toFormula -convergence. Birkhäuser, Boston (1993). [Google Scholar]
  7. V. De Cicco, N. Fusco and A. Verde, On L1-lower semicontinuity in BVFormula . J. Convex Analysis 12 (2005) 173–185. [Google Scholar]
  8. V. De Cicco, N. Fusco and A. Verde, A chain rule formula in BVFormula and its applications to lower semicontinuity. Calc. Var. Partial Differ. Equ. 28 (2007) 427–447. [CrossRef] [Google Scholar]
  9. V. De Cicco and G. Leoni, A chain rule in Formula and its applications to lower semicontinuity. Calc. Var. Partial Differ. Equ. 19 (2004) 23–51. [Google Scholar]
  10. E. De Giorgi and T. Franzoni, Su un tipo di convergenza variazionale. Atti Accad. Naz. Lincei Rend. Cl. Sci. Fis. Mat. Natur. 58 (1975) 842–850. [MathSciNet] [Google Scholar]
  11. E. De Giorgi and T. Franzoni, Su un tipo di convergenza variazionale. Rend. Sem. Mat. Brescia 3 (1979) 63–101. [Google Scholar]
  12. L.C. Evans and R.F. Gariepy, Lecture Notes on Measure Theory and Fine Properties of Functions. CRC Press, Boca Raton (1992). [Google Scholar]
  13. H. Federer, Geometric measure theory. Springer-Verlag, Berlin (1969). [Google Scholar]
  14. I. Fonseca and G. Leoni, Some remarks on lower semicontinuity. Indiana Univ. Math. J. 49 (2000) 617–635. [MathSciNet] [Google Scholar]
  15. I. Fonseca and G. Leoni, On lower semicontinuity and relaxation. Proc. R. Soc. Edinb. Sect. A Math. 131 (2001) 519–565. [CrossRef] [MathSciNet] [Google Scholar]
  16. I. Fonseca and S. Müller, Quasi-convex integrands and lower semicontinuity in L1. SIAM J. Math. Anal. 23 (1992) 1081–1098. [CrossRef] [MathSciNet] [Google Scholar]
  17. I. Fonseca and S. Müller, Relaxation of quasiconvex functionals in BVFormula for integrands Formula . Arch. Rat. Mech. Anal. 123 (1993) 1–49. [CrossRef] [MathSciNet] [Google Scholar]
  18. N. Fusco, M. Gori and F. Maggi, A remark on Serrin's Theorem. NoDEA 13 (2006) 425–433. [CrossRef] [MathSciNet] [Google Scholar]
  19. E. Giusti, Minimal Surfaces and Functions of Bounded Variation. Birkhäuser, Boston (1984). [Google Scholar]
  20. M. Gori and P. Marcellini, An extension of the Serrin's lower semicontinuity theorem. J. Convex Anal. 9 (2002) 475–502. [MathSciNet] [Google Scholar]
  21. M. Gori, F. Maggi and P. Marcellini, On some sharp conditions for lower semicontinuity in L1. Diff. Int. Eq. 16 (2003) 51–76. [Google Scholar]
  22. A.I. Vol'pert and S.I. Hudjaev, Analysis in Classes of Discontinuous Functions and Equations of Mathematical Physics. Martinus & Nijhoff Publishers, Dordrecht (1985). [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.