Free Access
Volume 13, Number 2, April-June 2007
Page(s) 378 - 395
Published online 12 May 2007
  1. F. Albertini and D. D'Alessandro, Notions of controllability for multilevel bilinear quantum mechanical systems. IEEE Trans. Automatic Control 48 (2003) 1399–1403. [Google Scholar]
  2. O.F. Alis, H. Rabitz, M.Q. Phan, C. Rosenthal and M. Pence, On the inversion of quantum mechanical systems: Determining the amount and type of data for a unique solution. J. Math. Chem. 35 (2004) 65–78. [CrossRef] [MathSciNet] [Google Scholar]
  3. Claudio Altafini, Controllability of quantum mechanical systems by root space decomposition of Formula . J. Math. Phys. 43 (2002) 2051–2062. [CrossRef] [MathSciNet] [Google Scholar]
  4. A. Assion, T. Baumert, M. Bergt, T. Brixner, B. Kiefer, V. Seyfried, M. Strehle and G. Gerber, Control of chemical reactions by feedback-optimized phase-shaped femtosecond laser pulses. Science 282 (1998) 919–922. [CrossRef] [PubMed] [Google Scholar]
  5. C. Bardeen, V.V. Yakovlev, K.R. Wilson, S.D. Carpenter, P.M. Weber and W.S. Warren, Feedback quantum control of molecular electronic population transfer. Chem. Phys. Lett. 280 (1997) 151. [CrossRef] [Google Scholar]
  6. C.J. Bardeen, V.V. Yakovlev, J.A. Squier and K.R. Wilson, Quantum control of population transfer in green fluorescent protein by using chirped femtosecond pulses. J. Am. Chem. Soc. 120 (1998) 13023–13027. [CrossRef] [Google Scholar]
  7. R.R. Barton and J.S. Jr. Ivey, Nelder-Mead simplex modifications for simulation optimization. Manage. Sci. 42 (1996) 954–973. [CrossRef] [Google Scholar]
  8. Y. Chen, P. Gross, V. Ramakrishna, H. Rabitz and K. Mease, Competitive tracking of molecular objectives described by quantum mechanics. J. Chem. Phys. 102 (1995) 8001–8010. [CrossRef] [Google Scholar]
  9. C. Cohen-Tannoudji, B. Diu and F. Laloë, Mécanique Quantique, Volumes I & II. Hermann, Paris (1977). [Google Scholar]
  10. J.M. Geremia and H. Rabitz, Optimal hamiltonian identification: The synthesis of quantum optimal control and quantum inversion. J. Chem. Phys 118 (2003) 5369–5382. [Google Scholar]
  11. R.S. Judson and H. Rabitz, Teaching lasers to control molecules. Phys. Rev. Lett. 68 (1992) 1500. [CrossRef] [PubMed] [Google Scholar]
  12. R.L. Kosut and H. Rabitz, Identification of quantum systems. In Proceedings of the 15th IFAC World Congress (2002). [Google Scholar]
  13. S. Kullback, Information Theory and Statistics. Wiley, New York (1959). [Google Scholar]
  14. S. Kullback and R.A. Leibler, On information and sufficiency. Ann. Math. Stat. 22 (1951) 79–86. [CrossRef] [Google Scholar]
  15. C. Le Bris, Y. Maday and G. Turinici, Towards efficient numerical approaches for quantum control. In Quantum Control: mathematical and numerical challenges, A. Bandrauk, M.C. Delfour and C. Le Bris Eds., CRM Proc. Lect. Notes Ser., AMS Publications, Providence, R.I. (2003) 127–142. [Google Scholar]
  16. R.J. Levis, G. Menkir and H. Rabitz, Selective bond dissociation and rearrangement with optimally tailored, strong-field laser pulses. Science 292 (2001) 709. [CrossRef] [PubMed] [Google Scholar]
  17. B. Li, G. Turinici, V. Ramakrishna and H. Rabitz, Optimal dynamic discrimination of similar molecules through quantum learning control. J. Phys. Chem. B. 106 (2002) 8125–8131. [CrossRef] [Google Scholar]
  18. Y. Maday and G. Turinici, New formulations of monotonically convergent quantum control algorithms. J. Chem. Phys 118 (18) (2003). [Google Scholar]
  19. M. Mirrahimi, P. Rouchon and G. Turinici, Lyapunov control of bilinear Schrödinger equations. Automatica 41 (2005) 1987–1994. [CrossRef] [MathSciNet] [Google Scholar]
  20. M. Mirrahimi, G. Turinici and P. Rouchon, Reference trajectory tracking for locally designed coherent quantum controls. J. Phys. Chem. A 109 (2005) 2631–2637. [CrossRef] [PubMed] [Google Scholar]
  21. M.Q. Phan and H. Rabitz, Learning control of quantum-mechanical systems by laboratory identification of effective input-output maps. Chem. Phys. 217 (1997) 389–400. [CrossRef] [Google Scholar]
  22. H. Rabitz, Perspective. Shaped laser pulses as reagents. Science 299 (2003) 525–527. [CrossRef] [PubMed] [Google Scholar]
  23. V. Ramakrishna, M. Salapaka, M. Dahleh and H. Rabitz, Controllability of molecular systems. Phys. Rev. A 51 (1995) 960–966. [CrossRef] [PubMed] [Google Scholar]
  24. S. Rice and M. Zhao, Optimal Control of Quatum Dynamics. Wiley (2000) (many additional references to the subjects of this paper may also be found here). [Google Scholar]
  25. N. Shenvi, J.M. Geremia and H. Rabitz, Nonlinear kinetic parameter identification through map inversion. J. Phys. Chem. A 106 (2002) 12315–12323. [CrossRef] [Google Scholar]
  26. M. Tadi and H. Rabitz, Explicit method for parameter identification. J. Guid. Control Dyn. 20 (1997) 486–491. [CrossRef] [Google Scholar]
  27. G. Turinici and H. Rabitz, Quantum wavefunction controllability. Chem. Phys. 267 (2001) 1–9. [CrossRef] [Google Scholar]
  28. G. Turinici and H. Rabitz, Wavefunction controllability in quantum systems. J. Phys. A 36 (2003) 2565–2576. [CrossRef] [MathSciNet] [Google Scholar]
  29. T Weinacht, J. Ahn and P. Bucksbaum, Controlling the shape of a quantum wavefunction. Nature 397 (1999) 233. [CrossRef] [Google Scholar]
  30. W. Zhu and H. Rabitz, A rapid monotonically convergent iteration algorithm for quantum optimal control over the expectation value of a positive definite operator. J. Chem. Phys. 109 (1998) 385–391. [CrossRef] [Google Scholar]
  31. W. Zhu and H. Rabitz, Potential surfaces from the inversion of time dependent probability density data. J. Chem. Phys. 111 (1999) 472–480. [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.