Free Access
Volume 13, Number 3, July-September 2007
Page(s) 419 - 457
Published online 26 July 2007
  1. E. Acerbi, G. Buttazzo and D. Percivale, A variational definition of the strain energy for an elastic string. J. Elasticity 25 (1991) 137–148. [CrossRef] [MathSciNet] [Google Scholar]
  2. D.R. Adams and L.I. Hedberg, Fonctions Spaces and Potential Theory. Springer Verlag, Berlin (1996). [Google Scholar]
  3. G. Anzellotti, S. Baldo and D. Percivale, Dimension reduction in variational problems, asymptotic development in Formula -convergence and thin structures in elasticity. Asymptot. Anal. 9 (1994) 61–100. [Google Scholar]
  4. D. Caillerie, Thin elastic and periodic plates. Math. Methods Appl. Sci. 6 (1984) 159–191. [Google Scholar]
  5. P.G. Ciarlet, Plates and Junctions in Elastic Multi-Structures: An Asymptotic Analysis. Masson, Paris (1990). [Google Scholar]
  6. P.G. Ciarlet, Mathematical Elasticity, Volume II: Theory of Plates. North-Holland, Amsterdam (1997). [Google Scholar]
  7. P.G. Ciarlet and P. Destuynder, A justification of the two-dimensional linear plate model. J. Mécanique 18 (1979) 315–344. [Google Scholar]
  8. A. Cimetière, G. Geymonat, H. Le Dret, A. Raoult, Z. Tutek, Asymptotic theory and analysis for displacements and stress distribution in nonlinear elastic straight slender rods. J. Elasticity 19 (1988) 111–161. [CrossRef] [MathSciNet] [Google Scholar]
  9. D. Cioranescu and J. Saint Jean Paulin, Homogenization of Reticulated Structures. Springer-Verlag, New York (1999). [Google Scholar]
  10. M. Dauge and I. Gruais, Asymptotics of arbitrary order for a thin elastic clamped plate, I: Optimal error estimates. Asymptot. Anal. 13 (1996) 167–197. [Google Scholar]
  11. G. Friesecke, R.D. James and S. Müller, A theorem on geometric rigidity and the derivation of nonlinear plate theory from three-dimensional elasticity. Comm. Pure Appl. Math. 55 (2002) 1461–1506. [Google Scholar]
  12. G. Friesecke, R.D. James and S. Müller, A hierarchy of plate models derived from nonlinear elasticity by gamma-convergence. Arch. Rat. Mech. Anal. 180 (2006) 183–236. [Google Scholar]
  13. A. Gaudiello, B. Gustafsson, C. Lefter and J. Mossino, Asymptotic analysis of a class of minimization problems in a thin multidomain. Calc. Var. Part. Diff. Eq. 15 (2002) 181–201. [CrossRef] [Google Scholar]
  14. A. Gaudiello, B. Gustafsson, C. Lefter and J. Mossino, Asymptotic analysis for monotone quasilinear problems in thin multidomains. Diff. Int. Eq. 15 (2002) 623–640. [Google Scholar]
  15. A. Gaudiello, R. Monneau, J. Mossino, F. Murat and A. Sili, On the junction of elastic plates and beams. C.R. Acad. Sci. Paris Sér. I 335 (2002) 717–722. [Google Scholar]
  16. A. Gaudiello and E. Zappale, Junction in a thin multidomain for a fourth order problem. M3AS: Math. Models Methods Appl. Sci. 16 (2006) 1887–1918. [CrossRef] [Google Scholar]
  17. I. Gruais, Modélisation de la jonction entre une plaque et une poutre en élasticité linéarisée. RAIRO: Modél. Math. Anal. Numér. 27 (1993) 77–105. [Google Scholar]
  18. I. Gruais, Modeling of the junction between a plate and a rod in nonlinear elasticity. Asymptotic Anal. 7 (1993) 179–194. [MathSciNet] [Google Scholar]
  19. V.A. Kozlov, V.G. Ma'zya and A.B. Movchan, Asymptotic representation of elastic fields in a multi-structure. Asymptot. Anal. 11 (1995) 343–415. [Google Scholar]
  20. H. Le Dret, Problèmes Variationnels dans les Multi-domaines: Modélisation des Jonctions et Applications. Masson, Paris (1991). [Google Scholar]
  21. H. Le Dret, Convergence of displacements and stresses in linearly elastic slender rods as the thickness goes to zero. Asymptot. Anal. 10 (1995) 367–402. [Google Scholar]
  22. H. Le Dret and A. Raoult, The nonlinear membrane model as variational limit of nonlinear three-dimensional elasticity. J. Math. Pures Appl. 74 (1995) 549–578. [MathSciNet] [Google Scholar]
  23. H. Le Dret and A. Raoult, The membrane shell model in nonlinear elasticity: a variational asymptotic derivation. J. Nonlinear Sci. 6 (1996) 59–84. [CrossRef] [MathSciNet] [Google Scholar]
  24. R. Monneau, F. Murat and A. Sili, Error estimate for the transition 3d-1d in anisotropic heterogeneous linearized elasticity. To appear. [Google Scholar]
  25. M.G. Mora and S. Müller, Derivation of the nonlinear bending-torsion theory for inextensible rods by Formula -convergence. Calc. Var. Part. Diff. Eq. 18 (2003) 287–305. [CrossRef] [Google Scholar]
  26. M.G. Mora and S. Müller, A nonlinear model for inextensible rods as a low energy Formula -limit of three-dimensional nonlinear elasticity. Ann. Inst. H. Poincaré Anal. Non Linéaire 21 (2004) 271–293. [CrossRef] [MathSciNet] [Google Scholar]
  27. F. Murat and A. Sili, Comportement asymptotique des solutions du sytème de l'élasticité linéarisée anisotrope hétérogène dans des cylindres minces. C.R. Acad. Sci. Paris Sér. I 328 (1999) 179–184. [Google Scholar]
  28. F. Murat and A. Sili, Anisotropic, heterogeneous, linearized elasticity problems in thin cylinders. To appear. [Google Scholar]
  29. O.A. Oleinik, A.S. Shamaev and G.A. Yosifian, Mathematical Problems in Elasticity and Homogenization. North-Holland, Amsterdam (1992). [Google Scholar]
  30. D. Percivale, Thin elastic beams: the variational approach to St. Venant's problem. Asymptot. Anal. 20 (1999) 39–60. [MathSciNet] [Google Scholar]
  31. L. Trabucho and J.M. Viano, Mathematical Modelling of Rods, Handbook of Numerical Analysis 4. North-Holland, Amsterdam (1996). [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.