Free Access
Volume 13, Number 3, July-September 2007
Page(s) 580 - 597
Published online 20 June 2007
  1. A. Auslender and M. Teboulle, Asymptotic Cones and Functions in Optimization and Variational Inequalities. Springer-Verlag, New York (2003). [Google Scholar]
  2. J.F. Bonnans and A. Shapiro, Perturbation Analysis of Optimization Problems. Springer-Verlag, New York (2000). [Google Scholar]
  3. R.I. Bot and G. Wanka, Farkas-type results with conjugate functions. SIAM J. Optim. 15 (2005) 540–554. [CrossRef] [Google Scholar]
  4. R.S. Burachik and V. Jeyakumar, Dual condition for the convex subdifferential sum formula with applications. J. Convex Anal. 12 (2005) 279–290. [MathSciNet] [Google Scholar]
  5. A. Charnes, W.W. Cooper and K.O. Kortanek, On representations of semi-infinite programs which have no duality gaps. Manage. Sci. 12 (1965) 113–121. [CrossRef] [Google Scholar]
  6. F.H. Clarke, A new approach to Lagrange multipliers. Math. Oper. Res. 2 (1976) 165–174. [Google Scholar]
  7. B.D. Craven, Mathematical Programming and Control Theory. Chapman and Hall, London (1978). [Google Scholar]
  8. N. Dinh, V. Jeyakumar and G.M. Lee, Sequential Lagrangian conditions for convex programs with applications to semidefinite programming. J. Optim. Theory Appl. 125 (2005) 85–112. [CrossRef] [MathSciNet] [Google Scholar]
  9. N. Dinh, M.A. Goberna and M.A. López, From linear to convex systems: consistency, Farkas' lemma and applications. J. Convex Anal. 13 (2006) 279–290. [Google Scholar]
  10. M.D. Fajardo and M.A. López, Locally Farkas-Minkowski systems in convex semi-infinite programming. J. Optim. Theory Appl. 103 (1999) 313–335. [CrossRef] [MathSciNet] [Google Scholar]
  11. M.A. Goberna and M.A. López, Linear Semi-infinite Optimization. J. Wiley, Chichester (1998). [Google Scholar]
  12. J. Gwinner, On results of Farkas type. Numer. Funct. Anal. Appl. 9 (1987) 471–520. [CrossRef] [Google Scholar]
  13. J.-B. Hiriart Urruty and C. Lemarechal, Convex Analysis and Minimization Algorithms I. Springer-Verlag, Berlin (1993). [Google Scholar]
  14. V. Jeyakumar, Asymptotic dual conditions characterizing optimality for infinite convex programs. J. Optim. Theory Appl. 93 (1997) 153–165. [CrossRef] [MathSciNet] [Google Scholar]
  15. V. Jeyakumar, Farkas' lemma: Generalizations, in Encyclopedia of Optimization II, C.A. Floudas and P. Pardalos Eds., Kluwer, Dordrecht (2001) 87–91. [Google Scholar]
  16. V. Jeyakumar, Characterizing set containments involving infinite convex constraints and reverse-convex constraints. SIAM J. Optim. 13 (2003) 947–959. [CrossRef] [MathSciNet] [Google Scholar]
  17. V. Jeyakumar, A.M. Rubinov, B.M. Glover and Y. Ishizuka, Inequality systems and global optimization. J. Math. Anal. Appl. 202 (1996) 900–919. [CrossRef] [MathSciNet] [Google Scholar]
  18. V. Jeyakumar, G.M. Lee and N. Dinh, New sequential Lagrange multiplier conditions characterizing optimality without constraint qualifications for convex programs. SIAM J. Optim. 14 (2003) 534–547. [CrossRef] [MathSciNet] [Google Scholar]
  19. V. Jeyakumar, N. Dinh and G.M. Lee, A new closed cone constraint qualification for convex optimization, Applied Mathematics Research Report AMR04/8, UNSW, 2004. Unpublished manuscript. [Google Scholar]
  20. P.-J. Laurent, Approximation et optimization. Hermann, Paris (1972). [Google Scholar]
  21. C. Li and K.F. Ng, On constraint qualification for an infinite system of convex inequalities in a Banach space. SIAM J. Optim. 15 (2005) 488–512. [CrossRef] [Google Scholar]
  22. W. Li, C. Nahak and I. Singer, Constraint qualification for semi-infinite systems of convex inequalities. SIAM J. Optim. 11 (2000) 31–52. [CrossRef] [MathSciNet] [Google Scholar]
  23. O.L. Mangasarian, Set containment characterization. J. Global Optim. 24 (2002) 473–480. [CrossRef] [MathSciNet] [Google Scholar]
  24. R. Puente and V.N. Vera de Serio, Locally Farkas-Minkowski linear semi-infinite systems. TOP 7 (1999) 103–121. [CrossRef] [MathSciNet] [Google Scholar]
  25. R.T. Rockafellar, Conjugate Duality and Optimization, CBMS-NSF Regional Conference Series in Applied Mathematics 16, SIAM, Philadelphia (1974). [Google Scholar]
  26. A. Shapiro, First and second order optimality conditions and perturbation analysis of semi-infinite programming problems, in Semi-Infinite Programming, R. Reemtsen and J. Rückmann Eds., Kluwer, Dordrecht (1998) 103–133. [Google Scholar]
  27. C. Zălinescu, Convex analysis in general vector spaces. World Scientific Publishing Co., NJ (2002). [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.