Free Access
Issue
ESAIM: COCV
Volume 13, Number 3, July-September 2007
Page(s) 570 - 579
DOI https://doi.org/10.1051/cocv:2007024
Published online 20 June 2007
  1. L. Aloui and M. Khenissi, Stabilisation de l'équation des ondes dans un domaine extérieur. Rev. Math. Iberoamericana 28 (2002) 1–16. [Google Scholar]
  2. N. Burq, Décroissance de l'énergie locale de l'équation des ondes pour le problème extérieur et absence de résonance au voisinage du réel. Act. Math. 1 (1998) 1–29. [Google Scholar]
  3. N. Burq, Semi-classical estimates for the resolvent in non trapping geometries. Int. Math. Res. Not. 5 (2002) 221–241. [Google Scholar]
  4. A. Jensen and T. Kato, Spectral properties of Schrödinger operators and time decay of the wave functions. Duke Math. J. 46 (1979) 583–612. [CrossRef] [MathSciNet] [Google Scholar]
  5. M. Khenissi, Équation des ondes amorties dans un domaine extérieur. Bull. Soc. Math. France 131 (2003) 211–228. [MathSciNet] [Google Scholar]
  6. R.B. Melrose and J. Sjostrand, Singularities of boundary value problems I. Comm. Pure Appl. Math. 31 (1978) 593–617. [CrossRef] [MathSciNet] [Google Scholar]
  7. C.S. Morawetz, Decay for solution of the exterior problem for the wave equation. Comm. Pure Appl. Math. 28 (1975) 229–264. [CrossRef] [MathSciNet] [Google Scholar]
  8. J. Ralston, Solution of the wave equation with localized energy. Comm. Pure Appl. Math. 22 (1969) 807–823. [Google Scholar]
  9. J. Rauch, Local decay of scattering solutions of Schrödinger-type equation. Comm. Math. Phys. 61 (1978) 149–168. [CrossRef] [MathSciNet] [Google Scholar]
  10. M. Reed and B. Simon, Methods of modern mathematical physics, Vol. I: Functional Analysis. New York, Academic Press (1972). [Google Scholar]
  11. Y. Tsutsumi, Local energy decay of solutions to the free Schrödinger equation in exterior domains. J. Fac. Sci. Univ. Tokyo, Sect. IA, Math. 31 (1984) 97–108. [Google Scholar]
  12. B. Vainberg, On the analytical properties of the resolvent for certain class of operator-pencils. Math. USSR-Sb. 6 (1968) 241–273. [CrossRef] [Google Scholar]
  13. B. Vainberg, On the exterior elliptic problems polynomially depending on a spectral parameters, and asymptotic behaviour for large time of solutions of non stationary problems. Math. USSR-Sb. 21 (1973) 221–239. [CrossRef] [Google Scholar]
  14. B. Vainberg, On the short wave asymptotic behaviour of solutions of stationary problems and asymptotic behaviour as tFormula of solutions of non-stationary problems. Russian Math. Surveys 30 (1975) 1–58. [CrossRef] [Google Scholar]
  15. B. Vainberg, Asymptotic methods in equations of mathematical physics. Gordon and Breach, New York (1988). [Google Scholar]
  16. G. Vodev, On the uniform decay of the local energy. Serdica Math. J. 25 (1999) 191–206. [MathSciNet] [Google Scholar]
  17. H. Wilcox, Scattering Theory for the d'Alembert Equation in Exterior Domains. Lect. Notes Math. 442, Springer-Verlag (1975). [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.