Free Access
Issue
ESAIM: COCV
Volume 13, Number 4, October-December 2007
Page(s) 809 - 828
DOI https://doi.org/10.1051/cocv:2007041
Published online 05 September 2007
  1. E. Acerbi and N. Fusco, Semicontinuity problems in the calculus of variations. Arch. Rational Mech. Anal. 86 (1984) 125–145. [CrossRef] [MathSciNet] [Google Scholar]
  2. R.A. Adams, Sobolev spaces. Academic Press, New York (1975). [Google Scholar]
  3. A. Braides, Γ-convergence for Beginners. Oxford University Press, Oxford (2002). [Google Scholar]
  4. A. Braides and A. Defranceschi, Homogenization of Multiple Integrals. Oxford University Press, Oxford (1998). [Google Scholar]
  5. A. Braides, I. Fonseca and G. Leoni, A-Quasiconvexity: Relaxation and Homogenization. ESAIM: COCV 5 (2000) 539–577. [CrossRef] [EDP Sciences] [Google Scholar]
  6. G. Dal Maso, An Introduction to Γ -convergence. Birkhäuser, Boston (1993). [Google Scholar]
  7. I. Fonseca and S. Müller, A-Quasiconvexity, lower semicontinuity and Young measures. SIAM J. Math. Anal. 30 (1999) 1355–1390. [CrossRef] [MathSciNet] [Google Scholar]
  8. I. Fonseca, S. Müller and P. Pedregal, Analysis of concentration and oscillation effects generated by gradient. SIAM J. Math. Anal. 29 (1998) 736–756. [CrossRef] [MathSciNet] [Google Scholar]
  9. F. Murat, Compacité par compensation : condition nécessaire et suffisante de continuité faible sous une hypothèse de rang constant. Ann. Scuola Norm. Sup. Pisa Cl. Sci. 8 (1981) 68–102. [Google Scholar]
  10. P. Pedregal, Parametrized measures and variational principles. Birkhäuser, Baston (1997). [Google Scholar]
  11. P. Suquet, Overall potentials and extremal surfaces of power law or ideally plastic composites. J. Mech. Phys. Solids 41 (1993) 981–1002. [CrossRef] [MathSciNet] [Google Scholar]
  12. D.R.S. Talbot and J.R. Willis, Upper and lower bounds for the overall properties of a nonlinear composite dielectric. I. Random microgeometry. Proc. Roy. Soc. London A 447 (1994) 365–384. [CrossRef] [Google Scholar]
  13. D.R.S. Talbot and J.R. Willis, Upper and lower bounds for the overall properties of a nonlinear composite dielectric. II. Periodic microgeometry. Proc. Roy. Soc. London A 447 (1994) 385–396. [CrossRef] [Google Scholar]
  14. L. Tartar, Compensated compactness and applications to partial differential equations. Nonlinerar Analysis and Mechanics: Heriot-Watt Symposium, R. Knops Ed., Longman, Harlow. Pitman Res. Notes Math. Ser. 39 (1979) 136–212. [Google Scholar]
  15. R. Temam, Navier-Stokes Equations. Elsevier Science Publishers, Amsterdam (1977). [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.