Free Access
Volume 14, Number 2, April-June 2008
Page(s) 294 - 317
Published online 20 March 2008
  1. A.A. Agrachev and A.V. Sarychev, On abnormal extremals for Lagrange variational problems. J. Math. Systems Estim. Control 1 (1998) 87–118. [Google Scholar]
  2. S.K. Agrawal and N. Faiz, A new efficient method for optimization of a class of nonlinear systems without Lagrange multipliers. J. Optim. Theor. Appl 97 (1998) 11–28. [CrossRef] [Google Scholar]
  3. U.M. Ascher, J. Christiansen and R.D. Russel, Collocation software for boundary-value ODE's. ACM Trans. Math. Software 7 (1981) 209–222. [CrossRef] [Google Scholar]
  4. U.M. Ascher, R.M.M. Mattheij and R.D. Russell, Numerical solution of boundary value problems for ordinary differential equations. Prentice Hall Series in Computational Mathematics Prentice Hall, Inc., Englewood Cliffs, NJ (1988). [Google Scholar]
  5. U.M. Ascher, R.M.M. Mattheij and R.D. Russell, Numerical solution of boundary value problems for ordinary differential equations, Classics in Applied Mathematics 13. Society for Industrial and Applied Mathematics (SIAM) (1995). [Google Scholar]
  6. J.T. Betts, Survey of numerical methods for trajectory optimization. J. Guid. Control Dyn 21 (1998) 193–207. [Google Scholar]
  7. J.T. Betts, Practical methods for optimal control using nonlinear programming, Advances in Design and Control. Society for Industrial and Applied Mathematics (SIAM), Philadelphia, PA (2001). [Google Scholar]
  8. B. Bonnard and M. Chyba, Singular trajectories and their role in control theory, Mathématiques & applications 40. Springer-Verlag-Berlin-Heidelberg-New York (2003). [Google Scholar]
  9. A.E. Bryson and Y.C. Ho, Applied Optimal Control. Ginn and Company (1969). [Google Scholar]
  10. R. Bulirsch, F. Montrone and H.J. Pesch, Abort landing in the presence of windshear as a minimax optimal control problem, part 2: Multiple shooting and homotopy. J. Optim. Theor. Appl 70 (1991) 223–254. [Google Scholar]
  11. R. Bulirsch, E. Nerz, H.J. Pesch and O. von Stryk, Combining direct and indirect methods in optimal control: Range maximization of a hang glider, in Optimal Control, R. Bulirsch, A. Miele, J. Stoer and K.H. Well Eds., International Series of Numerical Mathematics, Birkhäuser 111 (1993). [Google Scholar]
  12. F. Bullo and A.D. Lewis, Geometric Control of Mechanical Systems, Modeling, Analysis, and Design for Simple Mechanical Control Systems, Texts in Applied Mathematics 49. Springer-Verlag (2004). [Google Scholar]
  13. C.I. Byrnes and A. Isidori, Asymptotic stabilization of minimum phase nonlinear systems. IEEE Trans. Automat. Control 36 (1991) 1122–1137. [Google Scholar]
  14. F. Chaplais and N. Petit, Inversion in indirect optimal control, in Proc. of the 7th European Control Conf (2003). [Google Scholar]
  15. M. El-Kady, A Chebyshev finite difference method for solving a class of optimal control problems. Int. J. Comput. Math 80 (2003) 883–895. [CrossRef] [MathSciNet] [Google Scholar]
  16. F. Fahroo and I.M. Ross, Direct trajectory optimization by a Chebyshev pseudo-spectral method. J. Guid. Control Dyn 25 (2002) 160–166. [Google Scholar]
  17. N. Faiz, S.K. Agrawal and R.M. Murray, Differentially flat systems with inequality constraints: An approach to real-time feasible trajectory generation. J. Guid. Control Dyn 24 (2001) 219–227. [CrossRef] [Google Scholar]
  18. M. Fliess, J. Lévine, P. Martin and P. Rouchon, Flatness and defect of nonlinear systems: introductory theory and examples. Int. J. Control 61 (1995) 1327–1361. [Google Scholar]
  19. M. Fliess, J. Lévine, P. Martin and P. Rouchon, A Lie-Bäcklund approach to equivalence and flatness of nonlinear systems. IEEE Trans. Automat. Control 44 (1999) 922–937. [CrossRef] [MathSciNet] [Google Scholar]
  20. P.E. Gill, W. Murray, M.A. Saunders and M.A. Wright, User's Guide for NPSOL 5.0: A Fortran Package for Nonlinear Programming. Systems Optimization Laboratory, Stanford University, Stanford, CA 94305 (1998). [Google Scholar]
  21. C. Hargraves and S. Paris, Direct trajectory optimization using nonlinear programming and collocation. AIAA J. Guid. Control 10 (1987) 338–342. [Google Scholar]
  22. A. Isidori, Nonlinear Control Systems. Springer, New York, 2nd edn. (1989). [Google Scholar]
  23. A. Isidori, Nonlinear Control Systems II. Springer, London-Berlin-Heidelberg (1999). [Google Scholar]
  24. D.G. Luenberger, Optimization by vector spaces methods. Wiley-Interscience (1997). [Google Scholar]
  25. M.B. Milam, Real-time optimal trajectory generation for constrained systems. Ph.D. thesis, California Institute of Technology (2003). [Google Scholar]
  26. M.B. Milam, K. Mushambi and R.M. Murray, A new computational approach to real-time trajectory generation for constrained mechanical systems, in IEEE Conference on Decision and Control (2000). [Google Scholar]
  27. M.B. Milam, R. Franz and R.M. Murray, Real-time constrained trajectory generation applied to a flight control experiment, in Proc. of the IFAC World Congress (2002). [Google Scholar]
  28. R. Montgomery, Abnormal minimizers. SIAM J. Control Optim 32 (1994) 1605–1620. [CrossRef] [MathSciNet] [Google Scholar]
  29. R.M. Murray, J. Hauser, A. Jadbabaie, M.B. Milam, N. Petit, W.B. Dunbar and R. Franz, Online control customization via optimization-based control, in Software-Enabled Control, Information technology for dynamical systems, T. Samad and G. Balas Eds., Wiley-Interscience (2003) 149–174. [Google Scholar]
  30. T. Neckel, C. Talbot and N. Petit, Collocation and inversion for a reentry optimal control problem, in Proc. of the 5th Intern. Conference on Launcher Technology (2003). [Google Scholar]
  31. H. Nijmeijer and A.J. van der Schaft, Nonlinear Dynamical Control Systems. Springer-Verlag (1990). [Google Scholar]
  32. J. Oldenburg and W. Marquardt, Flatness and higher order differential model representations in dynamic optimization. Comput. Chem. Eng 26 (2002) 385–400. [CrossRef] [Google Scholar]
  33. N. Petit, M.B. Milam and R.M. Murray, Inversion based constrained trajectory optimization, in 5th IFAC Symposium on Nonlinear Control Systems (2001). [Google Scholar]
  34. I.M. Ross and F. Fahroo, Pseudospectral methods for optimal motion planning of differentially flat systems, in Proc. of the 41th IEEE Conf. on Decision and Control (2002). [Google Scholar]
  35. I.M. Ross, J. Rea and F. Fahroo, Exploiting higher-order derivatives in computational optimal control, in Proc. of the 2002 IEEE Mediterranean Conference (2002). [Google Scholar]
  36. H. Seywald, Trajectory optimization based on differential inclusion. J. Guid. Control Dyn 17 (1994) 480–487. [CrossRef] [Google Scholar]
  37. H. Seywald and R.R. Kumar, Method for automatic costate calculation. J. Guid. Control Dyn 19 (1996) 1252–1261. [CrossRef] [Google Scholar]
  38. H. Shen and P. Tsiotras, Time-optimal control of axi-symmetric rigid spacecraft using two controls. J. Guid. Control Dyn 22 (1999) 682–694. [CrossRef] [Google Scholar]
  39. H. Sira-Ramirez and S.K. Agrawal, Differentially Flat Systems. Control Engineering Series, Marcel Dekker (2004). [Google Scholar]
  40. M.C. Steinbach, Optimal motion design using inverse dynamics. Technical report, Konrad-Zuse-Zentrum für Informationstechnik Berlin (1997). [Google Scholar]
  41. M.J. van Nieuwstadt. Trajectory generation for nonlinear control systems. Ph.D. thesis, California Institute of Technology (1996). [Google Scholar]
  42. O. von Stryk and R. Bulirsch, Direct and indirect methods for trajectory optimization. Ann. Oper. Res 37 (1992) 357–373. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.