Free Access
Issue
ESAIM: COCV
Volume 14, Number 2, April-June 2008
Page(s) 318 - 342
DOI https://doi.org/10.1051/cocv:2007052
Published online 20 March 2008
  1. S. Alinhac, Non unicité du problème de Cauchy. Ann. Math 117 (1983) 77–108. [CrossRef] [MathSciNet] [Google Scholar]
  2. S. Alinhac and M.S. Baouendi, A non uniqueness result for operators of principal type. Math. Z 220 (1995) 561–568. [CrossRef] [MathSciNet] [Google Scholar]
  3. H. Bahouri, Dépendence non linéaire des données de Cauchy pour des solutions des équations aux dérivées partielles. J. Math. Pures. Appl 66 (1987) 127–138. [MathSciNet] [Google Scholar]
  4. C. Bardos, G. Lebeau and J. Rauch, Sharp sufficient conditions for the observation, control and stabilization of waves from the boundary. SIAM J. Control Optim 30 (1992) 1024–1065. [CrossRef] [MathSciNet] [Google Scholar]
  5. N. Burq, Contrôle de l'équation des plaques en présence d'obstacles strictement convexes. Mém. Soc. Math. France (N. S.) 55, Marseilles (1993). [Google Scholar]
  6. T. Duyckaerts, Optimal decay rates of the energy of an hyperbolic-parabolic system coupled by an interface. European Union Projects “Smart System” (2002). [Google Scholar]
  7. T. Duyckaerts, Xu Zhang and E. Zuazua, On the optimality of the observability inequality for parabolic and hyperbolic systems with potentials. Ann. Inst. H. Poincaré Anal. Non Linéaire (to appear). [Google Scholar]
  8. C. Fabre, Résultats de contrôlabilité exacte interne pour l'équation de Schrödinger et leurs limites asymptotiques : Application à certaines équations de plaques vibrantes. Asym. Anal 5 (1992) 343–379. [Google Scholar]
  9. E. Fernandez-Cara and E. Zuazua, The cost of approximate controllability for heat equations: The linear case. Adv. Diff. Equa 5 (2000) 465–514. [Google Scholar]
  10. A.V. Fursikov and O. Yu Imanivilov, Controllability of evolution equations. Lect. Notes Ser 34, Seoul National University, Research Institute of Mathematics, Global Analysis Research Center, Seoul (1996). [Google Scholar]
  11. L. Hörmander, Linear partiel differential operators. Springer-Verlag, Berlin (1963). [Google Scholar]
  12. L. Hörmander, On the uniqueness of the Cauchy problem under partial analyticity asumptions. Springer-Verlag (1996). [Google Scholar]
  13. V.-M. Isakov, On the uniquenss of the solution of the Cauchy problem. Sov. Math. Dokl 22 (1980) 639–642. [Google Scholar]
  14. F. John, Continous dependence on data for solution of partial differential equations with prescribed bound. Comm. Pure. Appl. Math 17 (1960) 551–585. [CrossRef] [MathSciNet] [Google Scholar]
  15. I. Lasiecka and R. Triggiani, Optimal regularity, exact controllability and uniform stabilisation of Schrödinger equation with Dirichlet control. Diff. Integral. Equa 5 (1992) 521–535. [Google Scholar]
  16. G. Lebeau, Contrôle de l'équation de Schrödinger. J. Math. Pures. Appl 71 (1992) 267–291. [MathSciNet] [Google Scholar]
  17. G. Lebeau, Contrôle analytique I : estimation a priori. Duk. Math. J 68 (1992) 1–30. [CrossRef] [MathSciNet] [Google Scholar]
  18. G. Lebeau et L. Robbiano, Contrôle exacte de l'équation de la chaleur. Comm Partial. Diff. Equa 20 (1995) 335–356. [CrossRef] [MathSciNet] [Google Scholar]
  19. G. Lebeau et L. Robbiano, Stabilisation de l'équation des ondes par le bord Duk. Math. J. 86 (1997) 465–491. [Google Scholar]
  20. J.-L. Lions, Contrôlabilité exacte, perturbations et stabilisation des systèmes distribués. Masson Collection, RMA, Paris (1988). [Google Scholar]
  21. J.-L. Lions et E. Magenes, Problèmes aux limites non homogènes et applications. Vol. 1, Dunod, Paris (1968). [Google Scholar]
  22. E. Machtyngier, Exact controllability for Schrödinger equation. SIAM J. Control. Optim 32 (1994) 24–34. [CrossRef] [MathSciNet] [Google Scholar]
  23. L. Miller, Geometric bounds on the growth rate of null-controllability cost of the heat equation in small time. J. Diff. Eq. 2004 (2004) 202–226. [Google Scholar]
  24. L. Miller, On the null-controllability of the heat equation in unbounded domains. Bull. Sci. Math 129 (2005) 175–185. [CrossRef] [MathSciNet] [Google Scholar]
  25. K.-D. Phung, Observability and control of Schrödinger equation. SIAM J. Control Optim 40 (2001) 211–230. [CrossRef] [MathSciNet] [Google Scholar]
  26. K.-D. Phung, Note on the cost of the approximate controllability for the heat equation with potentiel. J. Math. Anal. Appl. 295 (2004) 527–538. [CrossRef] [MathSciNet] [Google Scholar]
  27. J. Rauch, X. Zhang and E. Zuazua, Polynomial decay for a hyperbolic-parabolic coupled system. J. Math. Pures. Appl 84 (2005) 407–470. [CrossRef] [MathSciNet] [Google Scholar]
  28. L. Robbiano, Théorème d'unicité adapté au contrôle des solutions des problèmes hyperboliques. Comm Partial. Diff. Equa 16 (1991) 789–800. [CrossRef] [MathSciNet] [Google Scholar]
  29. L. Robbiano, Fonction de coût et contrôle des solutions des équations hyperboliques Asym. Anal. 10 (1995) 95–115. [Google Scholar]
  30. L. Robbiano and C. Zuily, Uniqueness in the Cauchy problem for operator with partially holomorphic coefficients. Inventiones Mathematice 131 (1998) 493–539. [CrossRef] [MathSciNet] [Google Scholar]
  31. D. Russell, A unified boundary contrllability theory for hyperbolic and parabolic partial differential equations. Stud. Appl. Math 52 (1973) 189–212. [Google Scholar]
  32. D. Tataru, Unique continuation for solution to P.D.E's between Hörmander theorem and Holmgren's theorem Comm. Part. Diff. Eq 20 (1995) 855–884. [Google Scholar]
  33. D. Tataru, Carleman estimates and unique continuation for solutions to boundary-value problems J. Math. Pures. Appl 75 (1996) 367–408. [Google Scholar]
  34. D. Tataru, Unique continuation for partial differential operators with partially analytic coefficients J. Math. Pures. Appl 78 (1999) 505–521. [Google Scholar]
  35. X. Zhang and E. Zuazua, Polinomial decay and control of a 1-d model for fluid-structure interaction. C. R. Acad. Sci., Paris, Ser. I 336 (2003) 745–750. [Google Scholar]
  36. X. Zhang and E. Zuazua, Control, observation and polynomial decay for a coupled heat-wave system. C. R. Acad. Sci., Paris, Ser. I 336 (2003) 823–828. [Google Scholar]
  37. X. Zhang and E. Zuazua, Long-time behavior of a coupled heat-wave system arising in fluid-structure interaction. Arch. Ration. Mech. Anal 184 (2007) 49–120. [CrossRef] [MathSciNet] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.