Free Access
Volume 14, Number 2, April-June 2008
Page(s) 356 - 380
Published online 20 March 2008
  1. R. Abraham, J.E. Marsden and T.S. Ratiu Manifolds, tensor analysis and applications Addison-Wesley, (1983) [Google Scholar]
  2. C. Altafini Reduction by group symmetry of second order variational problems on a semidirect product of Lie groups with positive definite Riemannian metric ESAIM: COCV 10 (2004) 526–548 [Google Scholar]
  3. V.I. Arnold Dynamical Systems III Springer-Verlag (1988) [Google Scholar]
  4. A. Cannas da Silva and A. Weinstein Geometric models for noncommutative algebras Amer. Math. Soc., Providence, RI (1999) xiv + 184 pp [Google Scholar]
  5. J.F. Cariñena and E. Martínez Lie algebroid generalization of geometric mechanics in Lie Algebroids and related topics in differential geometry (Warsaw 2000), Banach Center Publications 54 (2001) 201 [Google Scholar]
  6. H. Cendra, A. Ibort and J.E. Marsden Variational principal fiber bundles: a geometric theory of Clebsch potentials and Lin constraints J. Geom. Phys 4 (1987) 183–206 [Google Scholar]
  7. H. Cendra, J.E. Marsden and T.S. Ratiu Lagrangian reduction by stages Mem. Amer. Math. Soc 152 (2001) x + 108 pp [Google Scholar]
  8. H. Cendra, J.E. Marsden, S. Pekarsky and T.S. Ratiu Variational principles for Lie-Poisson and Hamilton-Poincaré equations Moscow Math. J 3 (2003) 833–867 [Google Scholar]
  9. J. Cortés, M. de León, J.C. Marrero and E. Martínez Nonholonomic Lagrangian systems on Lie algebroids Preprint 2005, arXiv:math-ph/0512003 [Google Scholar]
  10. J. Cortés, M. de León, J.C. Marrero, D. Martín de Diego and E. Martínez A survey of Lagrangian mechanics and control on Lie algebroids and groupoids Int. J. Geom. Meth. Math. Phys 3 (2006) 509–558 [Google Scholar]
  11. M. Crainic and R.L. Fernandes Integrability of Lie brackets Ann. Math 157 (2003) 575–620 [Google Scholar]
  12. M. Crampin Tangent bundle geometry for Lagrangian dynamics J. Phys. A: Math. Gen 16 (1983) 3755–3772 [Google Scholar]
  13. M. de León, J.C. Marrero and E. Martínez Lagrangian submanifolds and dynamics on Lie algebroids J. Phys. A: Math. Gen 38 (2005) R241–R308 [Google Scholar]
  14. K. Grabowska, J. Grabowski and P. Urbanski Geometrical Mechanics on algebroids Int. Jour. Geom. Meth. Math. Phys 3 (2006) 559–576 [Google Scholar]
  15. D.D. Holm, J.E. Marsden and T.S. Ratiu The Euler-Poincaré equations and semidirect products with applications to continuum theories Adv. Math 137 (1998) 1–81 [Google Scholar]
  16. J. Klein Espaces variationnels et mécanique Ann. Inst. Fourier 12 (1962) 1–124 [Google Scholar]
  17. S. Lang Differential manifolds Springer-Verlag, New-York (1972) [Google Scholar]
  18. C. López Variational calculus, symmetries and reduction Int. J. Geom. Meth. Math. Phys 3 (2006) 577–590 [Google Scholar]
  19. K.C.H. Mackenzie General Theory of Lie Groupoids and Lie Algebroids Cambridge University Press (2005) [Google Scholar]
  20. J.E. Marsden and T.S. Ratiu Introduction to Mechanics and symmetry Springer-Verlag, 1999 [Google Scholar]
  21. E. Martínez Lagrangian Mechanics on Lie algebroids Acta Appl. Math 67 (2001) 295–320 [Google Scholar]
  22. E. Martínez Geometric formulation of Mechanics on Lie algebroids, in Proceedings of the VIII Fall Workshop on Geometry and Physics, Medina del Campo, 1999, Publicaciones de la RSME 2 (2001) 209–222 [Google Scholar]
  23. E. Martínez Reduction in optimal control theory Rep. Math. Phys 53 (2004) 79–90 [Google Scholar]
  24. E. Martínez Classical field theory on Lie algebroids: Multisymplectic formalism Preprint 2004, arXiv:math.DG/0411352 [Google Scholar]
  25. E. Martínez Classical Field Theory on Lie algebroids: Variational aspects J. Phys. A: Mat. Gen 38 (2005) 7145–7160 [Google Scholar]
  26. E. Martínez, T. Mestdag and W. Sarlet Lie algebroid structures and Lagrangian systems on affine bundles J. Geom. Phys 44 (2002) 70–95 [Google Scholar]
  27. P. Michor Topics in differential geometry Book on the internet. [Google Scholar]
  28. J.P. Ortega and T.S. Ratiu Momentum maps and Hamiltonian Reduction Birkhäuser (2004) [Google Scholar]
  29. P. Piccione and D. Tausk Lagrangian and Hamiltonian formalism for constrained variational problems Proc. Roy. Soc.Edinburgh Sect. A 132 (2002) 1417–1437 [Google Scholar]
  30. W. Sarlet, T. Mestdag and E. Martínez Lagrangian equations on affine Lie algebroids Differential Geometry and its Applications, in Proc. 8th Int. Conf. (Opava 2001), D. Krupka et al Eds [Google Scholar]
  31. A. Weinstein Lagrangian Mechanics and groupoids Fields Inst. Comm 7 (1996) 207–231 [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.