Free Access
Issue
ESAIM: COCV
Volume 14, Number 3, July-September 2008
Page(s) 540 - 560
DOI https://doi.org/10.1051/cocv:2007057
Published online 21 November 2007
  1. M. Ainsworth and J.T. Oden, A Posteriori Error Estimation in Finite Element Analysis. Wiley, Chichester (2000). [Google Scholar]
  2. I. Babuska and W. Rheinboldt, Error estimates for adaptive finite element computations. SIAM J. Numer. Anal. 15 (1978) 736–754. [CrossRef] [MathSciNet] [Google Scholar]
  3. I. Babuska and T. Strouboulis, The Finite Element Method and its Reliability. Clarendon Press, Oxford (2001). [Google Scholar]
  4. W. Bangerth and R. Rannacher, Adaptive Finite Element Methods for Differential Equations. Lectures in Mathematics. ETH-Zürich, Birkhäuser, Basel (2003). [Google Scholar]
  5. R.E. Bank and A. Weiser, Some a posteriori error estimators for elliptic partial differential equations. Math. Comput. 44 (1985) 283–301. [CrossRef] [MathSciNet] [Google Scholar]
  6. R. Becker, H. Kapp and R. Rannacher, Adaptive finite element methods for optimal control of partial differential equations: Basic concepts. SIAM J. Control Optim. 39 (2000) 113–132. [CrossRef] [MathSciNet] [Google Scholar]
  7. M. Bergounioux, M. Haddou, M. Hintermüller and K. Kunisch, A comparison of a Moreau-Yosida based active set strategy and interior point methods for constrained optimal control problems. SIAM J. Optim. 11 (2000) 495–521. [CrossRef] [MathSciNet] [Google Scholar]
  8. P. Binev, W. Dahmen and R. DeVore, Adaptive finite element methods with convergence rates. Numer. Math. 97 (2004) 219–268. [CrossRef] [MathSciNet] [Google Scholar]
  9. C. Carstensen and S. Bartels, Each averaging technique yields reliable a posteriori error control in FEM on unstructured grids. Part I: Low order conforming, nonconforming, and mixed FEM. Math. Comput. 71 (2002) 945–969. [CrossRef] [MathSciNet] [Google Scholar]
  10. C. Carstensen and R.H.W. Hoppe, Convergence analysis of an adaptive edge finite element method for the 2d eddy current equations. J. Numer. Math. 13 (2005) 19–32. [CrossRef] [MathSciNet] [Google Scholar]
  11. C. Carstensen and R.H.W. Hoppe, Error reduction and convergence for an adaptive mixed finite element method. Math. Comp. 75 (2006) 1033–1042. [CrossRef] [MathSciNet] [Google Scholar]
  12. C. Carstensen and R.H.W. Hoppe, Convergence analysis of an adaptive nonconforming finite element method. Numer. Math. 103 (2006) 251–266. [CrossRef] [MathSciNet] [Google Scholar]
  13. W. Dörfler, A convergent adaptive algorithm for Poisson's equation. SIAM J. Numer. Anal. 33 (1996) 1106–1124. [CrossRef] [MathSciNet] [Google Scholar]
  14. K. Eriksson, D. Estep, P. Hansbo and C. Johnson, Computational Differential Equations. Cambridge University Press, Cambridge (1995). [Google Scholar]
  15. H.O. Fattorini, Infinite Dimensional Optimization and Control Theory. Cambridge University Press, Cambridge (1999). [Google Scholar]
  16. M. Hintermüller, A primal-dual active set algorithm for bilaterally control constrained optimal control problems. Quart. Appl. Math. LXI (2003) 131–161. [Google Scholar]
  17. J.B. Hiriart-Urruty and C. Lemaréchal, Convex Analysis and Minimization Algorithms. Springer, Berlin-Heidelberg-New York (1993). [Google Scholar]
  18. R.H.W. Hoppe and B. Wohlmuth, Element-oriented and edge-oriented local error estimators for nonconforming finite element methods. RAIRO Modél. Math. Anal. Numér. 30 (1996) 237–263. [MathSciNet] [Google Scholar]
  19. R.H.W. Hoppe and B. Wohlmuth, Hierarchical basis error estimators for Raviart-Thomas discretizations of arbitrary order, in Finite Element Methods: Superconvergence, Post-Processing, and A Posteriori Error Estimates, M. Krizek, P. Neittaanmäki and R. Steinberg Eds., Marcel Dekker, New York (1998) 155–167. [Google Scholar]
  20. R. Li, W. Liu H. Ma and T. Tang, Adaptive finite element approximation for distributed elliptic optimal control problems. SIAM J. Control Optim. 41 (2002) 1321–1349. [CrossRef] [MathSciNet] [Google Scholar]
  21. X.J. Li and J. Yong, Optimal Control Theory for Infinite Dimensional Systems. Birkhäuser, Boston-Basel-Berlin (1995). [Google Scholar]
  22. J.L. Lions, Optimal Control of Systems Governed by Partial Differential Equations. Springer, Berlin-Heidelberg-New York (1971). [Google Scholar]
  23. W. Liu and N. Yan, A posteriori error estimates for distributed optimal control problems. Adv. Comp. Math. 15 (2001) 285–309. [CrossRef] [MathSciNet] [PubMed] [Google Scholar]
  24. W. Liu and N. Yan, A posteriori error estimates for convex boundary control problems. Preprint, Institute of Mathematics and Statistics, University of Kent, Canterbury (2003). [Google Scholar]
  25. P. Morin, R.H. Nochetto and K.G. Siebert, Data oscillation and convergence of adaptive FEM. SIAM J. Numer. Anal. 38 (2000) 466–488. [CrossRef] [MathSciNet] [Google Scholar]
  26. P. Neittaanmäki and S. Repin, Reliable methods for mathematical modelling. Error control and a posteriori estimates. Elsevier, New York (2004). [Google Scholar]
  27. R. Verfürth, A Review of A Posteriori Estimation and Adaptive Mesh-Refinement Techniques. Wiley-Teubner, New York, Stuttgart (1996). [Google Scholar]
  28. O. Zienkiewicz and J. Zhu, A simple error estimator and adaptive procedure for practical engineering analysis. J. Numer. Meth. Eng. 28 (1987) 28–39. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.