Free Access
Issue
ESAIM: COCV
Volume 14, Number 3, July-September 2008
Page(s) 517 - 539
DOI https://doi.org/10.1051/cocv:2008002
Published online 07 February 2008
  1. M. Berggren, A unified discrete-continuous sensitivity analysis method for shape optimization. Lecture at the Radon Institut, Linz, Austria (2005). [Google Scholar]
  2. Z. Chen and J. Zou, Finite element methods and their convergence for elliptic and parabolic interface problems. Numer. Math. 79 (1998) 175–202. [CrossRef] [MathSciNet] [Google Scholar]
  3. P.G. Ciarlet, Mathematical Elasticity, Vol. 1. North-Holland, Amsterdam (1987). [Google Scholar]
  4. J.C. de los Reyes, Constrained optimal control of stationary viscous incompressible fluids by primal-dual active set methods. Ph.D. thesis, University of Graz, Austria (2003). [Google Scholar]
  5. J.C. de los Reyes and K. Kunisch, A semi-smooth Newton method for control constrained boundary optimal control of the Navier-Stokes equations. Nonlinear Anal. 62 (2005) 1289–1316. [CrossRef] [MathSciNet] [Google Scholar]
  6. M.C. Delfour and J.P. Zolesio, Shapes and Geometries. SIAM (2001). [Google Scholar]
  7. V. Girault and P.-A. Raviart, Finite Element Methods for Navier-Stokes Equations. Springer-Verlag, Berlin (1986). [Google Scholar]
  8. P. Grisvard, Elliptic Problems in Nonsmooth Domains. Pitman, Boston (1985). [Google Scholar]
  9. J. Haslinger and P. Neittaanmaki, Finite Element Approximation for Optimal Shape, Material and Topological Design. Wiley, Chichester (1996). [Google Scholar]
  10. J. Haslinger and P. Neittaanmaki, Introduction to shape optimization. SIAM, Philadelphia (2003). [Google Scholar]
  11. K. Ito, K. Kunisch and G. Peichl, Variational approach to shape derivatives for a class of Bernoulli problems. J. Math. Anal. Appl. 314 (2006) 126–149. [MathSciNet] [Google Scholar]
  12. F. Murat and J. Simon, Sur le contrôle par un domaine géometrique. Rapport 76015, Université Pierre et Marie Curie, Paris (1976). [Google Scholar]
  13. J. Sokolowski and J.P. Zolesio, Introduction to shape optimization. Springer, Berlin (1991). [Google Scholar]
  14. R. Temam, Navier Stokes Equations: Theory and Numerical Analysis. North-Holland, Amsterdam (1979). [Google Scholar]
  15. J.T. Wloka, B. Rowley and B. Lawruk, Boundary value problems for elliptic systems. Cambridge Press (1995). [Google Scholar]
  16. J.P. Zolesio, The material derivative (or speed method) for shape optimization, in Optimization of Distributed Parameter Structures, Vol. II, E. Haug and J. Cea Eds., Sijthoff & Noordhoff (1981). [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.