Free Access
Issue
ESAIM: COCV
Volume 14, Number 3, July-September 2008
Page(s) 478 - 493
DOI https://doi.org/10.1051/cocv:2007060
Published online 21 November 2007
  1. D. Breda, Solution operator approximation for delay differential equation characteristic roots computation via Runge-Kutta methods. Appl. Numer. Math. 56 (2005) 318–331. [CrossRef] [Google Scholar]
  2. D. Breda, S. Maset and R. Vermiglio, Computing the characteristic roots for delay differential equations. IMA J. Numer. Anal. 24 (2004) 1–19. [CrossRef] [MathSciNet] [Google Scholar]
  3. D. Breda, S. Maset and R. Vermiglio, Pseudospectral differencing methods for characteristic roots of delay differential equations. SIAM J. Sci. Comput. 27 (2005) 482–495. [CrossRef] [MathSciNet] [Google Scholar]
  4. J. Burke, A. Lewis and M. Overton, Approximating subdifferentials by random sampling of gradients. Math. Oper. Res. 22 (2002) 567–584. [CrossRef] [Google Scholar]
  5. J. Burke, A. Lewis and M. Overton, A nonsmooth, nonconvex optimization approach to robust stabilization by static output feedback and low-order controllers, in Proceedings of ROCOND 2003, Milan, Italy (2003). [Google Scholar]
  6. J. Burke, A. Lewis and M. Overton, A robust gradient sampling algorithm for nonsmooth, nonconvex optimization. SIAM J. Opt. 24 (2005) 567–584. [Google Scholar]
  7. J. Burke, D. Henrion, A. Lewis and M. Overton, HIFOO - A matlab Package for Fixed-Order Controller Design and H-infinity optimization, in Proceedings of ROCOND 2006, Toulouse, France (2006). [Google Scholar]
  8. J. Burke, D. Henrion, A. Lewis and M. Overton, Stabilization via nonsmooth, nonconvex optimization. IEEE Trans. Automat. Control 51 (2006) 1760–1769. [CrossRef] [MathSciNet] [Google Scholar]
  9. O. Diekmann, S. van Gils, S.V. Lunel and H.-O. Walther, Delay Equations. Appl. Math. Sci. 110, Springer-Verlag (1995). [Google Scholar]
  10. K. Engelborghs and D. Roose, On stability of LMS methods and characteristic roots of delay differential equations. SIAM J. Numer. Anal. 40 (2002) 629–650. [CrossRef] [MathSciNet] [Google Scholar]
  11. K. Engelborghs, T. Luzyanina and D. Roose, Numerical bifurcation analysis of delay differential equations using DDE-BIFTOOL. ACM Trans. Math. Softw. 28 (2002) 1–21. [CrossRef] [MathSciNet] [Google Scholar]
  12. K. Gu, V. Kharitonov and J. Chen, Stability of time-delay systems. Birkhauser (2003). [Google Scholar]
  13. J. Hale and S.V. Lunel, Introduction to Functional Differential Equations, Applied Mathematical Sciences 99. Springer-Verlag, (1993). [Google Scholar]
  14. V. Kolmanovskii and A. Myshkis, Introduction to the theory and application of functional differential equations, Math. Appl. 463. Kluwer Academic Publishers (1999). [Google Scholar]
  15. T. Luzyanina and D. Roose, Equations with distributed delays: bifurcation analysis using computational tools for discrete delay equations. Funct. Differ. Equ. 11 (2004) 87–92. [MathSciNet] [Google Scholar]
  16. W. Michiels and D. Roose, An eigenvalue based approach for the robust stabilization of linear time-delay systems. Int. J. Control 76 (2003) 678–686. [CrossRef] [Google Scholar]
  17. W. Michiels, K. Engelborghs, P. Vansevenant and D. Roose, Continuous pole placement for delay equations. Automatica 38 (2002) 747–761. [CrossRef] [MathSciNet] [Google Scholar]
  18. S.-I. Niculescu, Delay effects on stability: A robust control approach, LNCIS 269. Springer-Heidelberg (2001). [Google Scholar]
  19. J.-P. Richard, Time-delay systems: an overview of some recent and open problems. Automatica 39 (2003) 1667–1694. [CrossRef] [MathSciNet] [Google Scholar]
  20. R. Seydel, Practical Bifurcation and Stability Analysis: From Equilibrium to Chaos, Interdisciplinary Applied Mathematics 5. Springer-Verlag, 2nd edn. (1994). [Google Scholar]
  21. K. Verheyden and D. Roose, Efficient numerical stability analysis of delay equations: a spectral method, in Proceedings of the IFAC Workshop on Time-Delay Systems 2004 (2004) 209–214. [Google Scholar]
  22. K. Verheyden, K. Green and D. Roose, Numerical stability analysis of a large-scale delay system modelling a lateral semiconductor laser subject to optical feedback. Phys. Rev. E 69 (2004) 036702. [CrossRef] [Google Scholar]
  23. K. Verheyden, T. Luzyanina and D. Roose, Efficient computation of characteristic roots of delay differential equations using LMS methods. J. Comput. Appl. Math. (in press). Available online 5 March 2007. [Google Scholar]
  24. T. Vyhlídal, Analysis and synthesis of time delay system spectrum. Ph.D. thesis, Department of Mechanical Engineering, Czech Technical University, Czech Republic (2003). [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.