Free Access
Issue
ESAIM: COCV
Volume 14, Number 3, July-September 2008
Page(s) 456 - 477
DOI https://doi.org/10.1051/cocv:2007061
Published online 21 November 2007
  1. M. Amar, and G. Bellettini, A notion of total variation depending on a metric with discontinuous coefficients. Ann. Inst. Henri Poincaré 11 (1994) 91–133. [Google Scholar]
  2. M. Amar and V. De Cicco, Relaxation in BV for a class of functionals without continuity assumptions. NoDEA Nonlinear Differential Equations Appl. (to appear). [Google Scholar]
  3. M. Amar, V. De Cicco and N. Fusco, A relaxation result in BV for integral functionals with discontinuous integrands. ESAIM: COCV 13 (2007) 396–412. [CrossRef] [EDP Sciences] [Google Scholar]
  4. L. Ambrosio, N. Fusco and D. Pallara, Functions of bounded variation and free discontinuity problems. Oxford University Press, New York (2000). [Google Scholar]
  5. G. Anzellotti, G. Buttazzo and G. Dal Maso, Dirichlet problem for demi-coercive functionals. Nonlinear Anal. 10 (1986) 603–613. [CrossRef] [MathSciNet] [Google Scholar]
  6. G. Bouchitté and M. Valadier, Integral representation of convex functionals on a space of measures. J. Funct. Anal. 80 (1988) 398–420. [CrossRef] [MathSciNet] [Google Scholar]
  7. G. Bouchitté, I. Fonseca and L. Mascarenhas, A global method for relaxation. Arch. Rat. Mech. Anal. 145 (1998) 51–98. [CrossRef] [Google Scholar]
  8. G. Buttazzo, Semicontinuity, Relaxation and Integral Representation Problems in the Calculus of Variations. Pitman Res. Notes in Math., Longman, Harlow (1989). [Google Scholar]
  9. M. Carriero, G. Dal Maso, A. Leaci and E. Pascali, Relaxation of the non-parametric Plateau problem with an obstacle. J. Math. Pures Appl. 67 (1988) 359–396. [MathSciNet] [Google Scholar]
  10. G. Dal Maso, Integral representation on Formula of Γ-limits of variational integrals. Manuscripta Math. 30 (1980) 387–416. [CrossRef] [Google Scholar]
  11. G. Dal Maso, On the integral representation of certain local functionals. Ricerche di Matematica 32 (1983) 85–113. [MathSciNet] [Google Scholar]
  12. G. Dal Maso, An Introduction to Γ-convergence. Birkhäuser, Boston (1993). [Google Scholar]
  13. V. De Cicco and G. Leoni, A chain rule in Formula and its applications to lower semicontinuity. Calc. Var. Partial Differential Equations 19 (2004) 23–51. [Google Scholar]
  14. V. De Cicco, N. Fusco and A. Verde, On L1-lower semicontinuity in Formula . J. Convex Analysis 12 (2005) 173–185. [Google Scholar]
  15. V. De Cicco, N. Fusco and A. Verde, A chain rule formula in Formula and its applications to lower semicontinuity. Calc. Var. Partial Differential Equations 28 (2007) 427–447. [CrossRef] [Google Scholar]
  16. E. De Giorgi and T. Franzoni, Su un tipo di convergenza variazionale. Atti Accad. Naz. Lincei Rend. Cl. Sci. Fis. Mat. Natur. 58 (1975) 842–850. [MathSciNet] [Google Scholar]
  17. E. De Giorgi and T. Franzoni, Su un tipo di convergenza variazionale. Rend. Sem. Mat. Brescia 3 (1979) 63–101. [Google Scholar]
  18. H. Federer and W.P. Ziemer, The Lebesgue set of a function whose distribution derivatives are p-th power summable. Indiana Un. Math. J. 22 (1972) 139–158. [CrossRef] [MathSciNet] [Google Scholar]
  19. I. Fonseca and G. Leoni, On lower semicontinuity and relaxation. Proc. Royal Soc. Edinb., Sect. A, Math. 131 (2001) 519–565. [Google Scholar]
  20. I. Fonseca and S. Müller, Quasi-convex integrands and lower semicontinuity in L1. SIAM J. Math. Anal. 23 (1992) 1081–1098. [CrossRef] [MathSciNet] [Google Scholar]
  21. I. Fonseca and S. Müller, Relaxation of quasiconvex functionals in BVFormula for integrands Formula . Arch. Rat. Mech. Anal. 123 (1993) 1–49. [CrossRef] [MathSciNet] [Google Scholar]
  22. N. Fusco, F. Giannetti and A. Verde, A remark on the L1-lower semicontinuity for integral functionals in BV. Manuscripta Math. 112 (2003) 313–323. [CrossRef] [MathSciNet] [Google Scholar]
  23. N. Fusco, M. Gori and F. Maggi, A remark on Serrin's Theorem. NoDEA Nonlinear Differential Equations Appl. 13 (2006) 425–433. [CrossRef] [MathSciNet] [Google Scholar]
  24. M. Gori and F. Maggi, The common root of the geometric conditions in Serrin's semicontinuity theorem. Ann. Mat. Pura Appl. 184 (2005) 95–114. [CrossRef] [MathSciNet] [Google Scholar]
  25. M. Gori, F. Maggi and P. Marcellini, On some sharp conditions for lower semicontinuity in L1. Diff. Int. Eq. 16 (2003) 51–76. [Google Scholar]
  26. F. Maggi, On the relaxation on BV of certain non coercive integral functionals. J. Convex Anal. 10 (2003) 477–489. [MathSciNet] [Google Scholar]
  27. M. Miranda, Superfici cartesiane generalizzate ed insiemi di perimetro localmente finito sui prodotti cartesiani. Ann. Scuola Norm. Sup. Pisa 18 (1964) 515–542. [MathSciNet] [Google Scholar]
  28. Y.G. Reshetnyak, Weak convergence of completely additive vector functions on a set. Siberian Math. J. 9 (1968) 1039–1045. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.