Free Access
Issue |
ESAIM: COCV
Volume 14, Number 4, October-December 2008
|
|
---|---|---|
Page(s) | 744 - 758 | |
DOI | https://doi.org/10.1051/cocv:2008003 | |
Published online | 18 January 2008 |
- J.-P. Aubin and H. Frankowska, Set-Valued Analysis. Birkhäuser, Boston (1990). [Google Scholar]
- A. Auslender and M. Teboulle, Asymptotic Cones and Functions in Optimization and Variational Inequalities. Springer, Berlin (2003). [Google Scholar]
- R.W. Cottle, J.S. Pang and R.E. Stone, The Linear Complementarity Problem. Academic Press, New York (1992). [Google Scholar]
- J.P. Crouzeix, Pseudomonotone variational inequality problems: Existence of solutions. Math. Program. 78 (1997) 305–314. [Google Scholar]
- S. Dafermos, Sensitivity analysis in variational inequalities. Math. Oper. Res. 13 (1988) 421–434. [CrossRef] [MathSciNet] [Google Scholar]
- R. Doverspike, Some perturbation results for the linear complementarity problem. Math. Program. 23 (1982) 181–192. [CrossRef] [Google Scholar]
- F. Facchinei and J.S. Pang, Total stability of variational inequalities. Technical Report 09–98, Dipartimento di Informatica e Sistematica, Università Degli Stuti di Roma “La Sapienza” (1998). [Google Scholar]
- F. Facchinei and J.S. Pang, Finite-Dimensional Variational Inequalities and Complementarity Problems I. Springer, New York (2003). [Google Scholar]
- F. Flores-Bazán and R. López, The linear complementarity problem under asymptotic analysis. Math. Oper. Res. 30 (2005) 73–90. [CrossRef] [MathSciNet] [Google Scholar]
- F. Flores-Bazán and R. López, Characterizing Q-matrices beyong L-matrices. J. Optim. Theory Appl. 127 (2005) 447–457. [CrossRef] [MathSciNet] [Google Scholar]
- F. Flores-Bazán and R. López, Asymptotic analysis, existence and sensitivity results for a class of multivalued complementarity problems. ESAIM: COCV 12 (2006) 271–293. [CrossRef] [EDP Sciences] [Google Scholar]
- M.S. Gowda, Complementarity problems over locally compact cones. SIAM J. Control Optim. 27 (1989) 836–841. [CrossRef] [MathSciNet] [Google Scholar]
- M.S. Gowda and J.S. Pang, On solution stability of the linear complementarity problems. Math. Oper. Res. 17 (1992) 77–83. [CrossRef] [MathSciNet] [Google Scholar]
- M.S. Gowda and J.S. Pang, Some existence results for multivalued complementarity problems. Math. Oper. Res. 17 (1992) 657–669. [CrossRef] [MathSciNet] [Google Scholar]
- M.S. Gowda and J.S. Pang, The basic theorem of complementarity revisited. Math. Program. 58 (1993) 161–177. [CrossRef] [Google Scholar]
- M.S. Gowda and J.S. Pang, On the boundedness and stability to the affine variational inequality problem. SIAM J. Control Optim. 32 (1994) 421–441. [CrossRef] [MathSciNet] [Google Scholar]
- M.S. Gowda and R. Sznajder, On the Lipschitzian properties of polyhedral multifunctions. Math. Program. 74 (1996) 267–278. [Google Scholar]
- C.D. Ha, Application of degree theory in stability of the complementarity problem. Math. Oper. Res. 12 (1987) 368–376. [CrossRef] [MathSciNet] [Google Scholar]
- P.T. Harker and J.S. Pang, Finite-dimensional variational and nonlinear complementarity problems: A survey of theory, algorithms and applications. Math. Program. 48 (1990) 161–220. [CrossRef] [Google Scholar]
- W.W. Hogan, Point-to-set maps in mathematical programming. SIAM Rev. 15 (1973) 591–603. [CrossRef] [MathSciNet] [Google Scholar]
- G. Isac, The numerical range theory and boundedness of solutions of the complementarity problem. J. Math. Anal. Appl. 143 (1989) 235–251. [CrossRef] [MathSciNet] [Google Scholar]
- G. Isac, Pseudo-monotone complementarity problems in Hilbert space. J. Optim. Theory Appl. 75 (1992) 281–295. [CrossRef] [MathSciNet] [Google Scholar]
- S. Karamardian, Generalized complementarity problem. J. Optim. Theory Appl. 8 (1971) 161–168. [CrossRef] [Google Scholar]
- S. Karamardian, Complementarity problems over cones with monotone and pseudomonotone maps. J. Optim. Theory Appl. 18 (1976) 445–454. [CrossRef] [Google Scholar]
- D. Kinderlehrer and G. Stampacchia, An Introduction to Variational Inequalities and Their Applications. Academic Press, New York (1980). [Google Scholar]
- J. Kyparisis, Sensitivity analysis for variational inequalities and complementarity problems. Ann. Oper. Res. 27 (1990) 143–174. [CrossRef] [MathSciNet] [Google Scholar]
- O.L. Mangasarian, Characterizations of bounded solutions of linear complementarity problems. Math. Program. Study 19 (1982) 153–166. [Google Scholar]
- O.L. Mangasarian and L. McLinden, Simple bounds for solutions of monotone complementarity problems and convex programs. Math. Program. 32 (1985) 32–40. [CrossRef] [Google Scholar]
- N. Megiddo, A monotone complementarity problem with feasible solutions but no complementarity solutions. Math. Program. 12 (1977) 131–132. [CrossRef] [Google Scholar]
- N. Megiddo, On the parametric nonlinear complementarity problem. Math. Program. Study 7 (1978) 142–150. [Google Scholar]
- J.J. Moré, Coercivity conditions in nonlinear complementarity problems. SIAM Rev. 17 (1974) 1–16. [Google Scholar]
- J.S. Pang, Complementarity problems, in Nonconvex Optimization and its Applications: Handbook of Global Optimization, R. Horst and P.M. Pardalos Eds., Kluwer, Dordrecht (1995). [Google Scholar]
- S.M. Robinson, Some continuity properties of polyhedral multifunctions. Math. Program. Study 14 (1981) 206–214. [Google Scholar]
- R.T. Rockafellar and R.J. Wets, Variational Analysis. Springer, Berlin (1998). [Google Scholar]
- R.L. Tobin, Sensitivity analysis for complementarity problems. J. Optim. Theory Appl. 48 (1986) 191–204. [MathSciNet] [Google Scholar]
- S.W. Xiang and Y.H. Zhou, Continuity properties of solutions of vector optimization. Nonlinear Anal. 64 (2006) 2496–2506. [CrossRef] [MathSciNet] [Google Scholar]
- Y. Zhao, Existence of a solution to nonlinear variational inequality under generalized positive homogeneity. Oper. Res. Lett. 25 (1999) 231–239. [CrossRef] [MathSciNet] [Google Scholar]
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.