Free Access
Volume 14, Number 4, October-December 2008
Page(s) 725 - 743
Published online 18 January 2008
  1. L. Ambrosio, Lecture Notes on Optimal Transport Problems, Mathematical aspects of evolving interfaces, CIME Summer School in Madeira 1812. Springer (2003). [Google Scholar]
  2. R. Bellman and K.L. Cooke, Differential-difference equations, Mathematics in Science and Engineering. Academic Press, New York-London (1963). [Google Scholar]
  3. R. Boucekkine, O. Licandro, L. Puch and F. del Rio, Vintage capital and the dynamics of the AK model. J. Economic Theory 120 (2005) 39–72. [CrossRef] [Google Scholar]
  4. P. Cannarsa and C. Sinestrari, Semiconcave Functions, Hamilton-Jacobi Equations and Optimal Control. Birkhäuser (2004). [Google Scholar]
  5. C. Dellacherie and P.-A. Meyer, Probabilities and Potential, Mathematical Studies 29. North-Holland (1978). [Google Scholar]
  6. M.E. Drakhlin and E. Stepanov, On weak lower-semi continuity for a class of functionals with deviating arguments. Nonlinear Anal. TMA 28 (1997) 2005–2015. [CrossRef] [Google Scholar]
  7. I. Ekeland and R. Temam, Convex Analysis and Variational Problems, Classics in Mathematics. Society for Industrial and Applied Mathematics, Philadelphia (1999). [Google Scholar]
  8. I. Elsanosi, B. Øksendal and A. Sulem, Some solvable stochastic control problems with delay. Stoch. Stoch. Rep. 71 (2000) 69–89. [Google Scholar]
  9. L. El'sgol'ts, Introduction to the Theory of Differential Equations with Deviating Arguments. Holden-Day, San Francisco (1966). [Google Scholar]
  10. F. Gozzi and C. Marinelli, Stochastic optimal control of delay equations arising in advertising models, in Stochastic partial differential equations and applications VII, Chapman & Hall, Boca Raton, Lect. Notes Pure Appl. Math. 245 (2006) 133–148. [Google Scholar]
  11. E. Jouini, P.-F. Koehl and N. Touzi, Optimal investment with taxes: an optimal control problem with endogenous delay. Nonlinear Anal. Theory Methods Appl. 37 (1999) 31–56. [CrossRef] [Google Scholar]
  12. E. Jouini, P.-F. Koehl and N. Touzi, Optimal investment with taxes: an existence result. J. Math. Econom. 33 (2000) 373–388. [CrossRef] [MathSciNet] [Google Scholar]
  13. M.N. Oguztöreli, Time-Lag Control Systems. Academic Press, New-York (1966). [Google Scholar]
  14. F.P. Ramsey, A mathematical theory of saving. Economic J. 38 (1928) 543–559. [Google Scholar]
  15. L. Samassi, Calcul des variations des fonctionelles à arguments déviés. Ph.D. thesis, University of Paris Dauphine, France (2004). [Google Scholar]
  16. L. Samassi and R. Tahraoui, Comment établir des conditions nécessaires d'optimalité dans les problèmes de contrôle dont certains arguments sont déviés? C. R. Math. Acad. Sci. Paris 338 (2004) 611–616. [CrossRef] [MathSciNet] [Google Scholar]
  17. L. Samassi and R. Tahraoui, How to state necessary optimality conditions for control problems with deviating arguments? ESAIM: COCV (2007) e-first, doi: 10.1051/cocv:2007058. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.