Free Access
Issue
ESAIM: COCV
Volume 14, Number 4, October-December 2008
Page(s) 825 - 863
DOI https://doi.org/10.1051/cocv:2008016
Published online 07 February 2008
  1. E.L. Allgower and K. Georg, Numerical continuation methods, Springer Series in Computational Mathematics 13. Springer-Verlag, Berlin (1990). [Google Scholar]
  2. L. Ambrosio, N. Fusco and D. Pallara, Functions of bounded variation and free discontinuity problems, Oxford Mathematical Monographs. The Clarendon Press Oxford University Press, New York (2000). [Google Scholar]
  3. P. Berkmann and H.J. Pesch, Abort landing in windshear: optimal control problem with third-order state constraint and varied switching structure. J. Optim. Theory Appl. 85 (1995) 21–57. [CrossRef] [MathSciNet] [Google Scholar]
  4. J.F. Bonnans and A. Hermant, Conditions d'optimalité du second ordre nécessaires ou suffisantes pour les problèmes de commande optimale avec une contrainte sur l'état et une commande scalaires. C. R. Math. Acad. Sci. Paris 343 (2006) 473–478. [CrossRef] [MathSciNet] [Google Scholar]
  5. J.F. Bonnans and A. Hermant, Second-order analysis for optimal control problems with pure state constraints and mixed control-state constraints. Ann. Inst. H. Poincaré Anal. Non Linéaire (to appear). [Google Scholar]
  6. J.F. Bonnans and A. Hermant, Well-posedness of the shooting algorithm for state constrained optimal control problems with a single constraint and control. SIAM J. Control Optim. 46 (2007) 1398–1430. [CrossRef] [MathSciNet] [Google Scholar]
  7. J.F. Bonnans and A. Hermant, No gap second order optimality conditions for optimal control problems with a single state constraint and control. Math. Programming, Ser. B (2007) DOI: 10.1007/s10107-007-0167-8. [Google Scholar]
  8. J.F. Bonnans and A. Shapiro, Perturbation analysis of optimization problems. Springer-Verlag, New York (2000). [Google Scholar]
  9. A.E. Bryson, W.F. Denham and S.E. Dreyfus, Optimal programming problems with inequality constraints I: Necessary conditions for extremal solutions. AIAA Journal 1 (1963) 2544–2550. [CrossRef] [Google Scholar]
  10. R. Bulirsch, F. Montrone and H.J. Pesch, Abort landing in the presence of windshear as a minimax optimal control problem. II. Multiple shooting and homotopy. J. Optim. Theory Appl. 70 (1991) 223–254. [CrossRef] [MathSciNet] [Google Scholar]
  11. P. Deuflhard, Newton methods for nonlinear problems, Affine invariance and adaptive algorithms, Springer Series in Computational Mathematics 35. Springer-Verlag, Berlin (2004). [Google Scholar]
  12. A.L. Dontchev and W.W. Hager, Lipschitzian stability for state constrained nonlinear optimal control. SIAM J. Control Optim. 36 (1998) 698–718 (electronic). [CrossRef] [MathSciNet] [Google Scholar]
  13. N. Dunford and J. Schwartz, Linear operators, Vols. I and II. Interscience, New York (1958), (1963). [Google Scholar]
  14. J. Gergaud and T. Haberkorn, Homotopy method for minimum consumption orbit transfer problem. ESAIM: COCV 12 (2006) 294–310 (electronic). [CrossRef] [EDP Sciences] [Google Scholar]
  15. W.W. Hager, Lipschitz continuity for constrained processes. SIAM J. Control Optim. 17 (1979) 321–338. [CrossRef] [MathSciNet] [Google Scholar]
  16. A. Haraux, How to differentiate the projection on a convex set in Hilbert space. Some applications to variational inequalities. J. Math. Soc. Japan 29 (1977) 615–631. [CrossRef] [MathSciNet] [Google Scholar]
  17. R.F. Hartl, S.P. Sethi and R.G. Vickson, A survey of the maximum principles for optimal control problems with state constraints. SIAM Review 37 (1995) 181–218. [CrossRef] [MathSciNet] [Google Scholar]
  18. A.D. Ioffe and V.M. Tihomirov, Theory of Extremal Problems. North-Holland Publishing Company, Amsterdam (1979). Russian Edition: Nauka, Moscow (1974). [Google Scholar]
  19. D.H. Jacobson, M.M. Lele and J.L. Speyer, New necessary conditions of optimality for control problems with state-variable inequality contraints. J. Math. Anal. Appl. 35 (1971) 255–284. [CrossRef] [MathSciNet] [Google Scholar]
  20. K. Malanowski, Two-norm approach in stability and sensitivity analysis of optimization and optimal control problems. Adv. Math. Sci. Appl. 2 (1993) 397–443. [MathSciNet] [Google Scholar]
  21. K. Malanowski, Stability and sensitivity of solutions to nonlinear optimal control problems. J. Appl. Math. Optim. 32 (1995) 111–141. [CrossRef] [Google Scholar]
  22. K. Malanowski, Sufficient optimality conditions for optimal control subject to state constraints. SIAM J. Control Optim. 35 (1997) 205–227. [CrossRef] [MathSciNet] [Google Scholar]
  23. K. Malanowski and H. Maurer, Sensitivity analysis for state constrained optimal control problems. Discrete Contin. Dynam. Systems 4 (1998) 241–272. [CrossRef] [MathSciNet] [Google Scholar]
  24. P. Martinon and J. Gergaud, An application of PL continuation methods to singular arcs problems, in Recent advances in optimization, Lect. Notes Econom. Math. Systems 563, Springer, Berlin (2006) 163–186. [Google Scholar]
  25. H. Maurer, On the minimum principle for optimal control problems with state constraints. Schriftenreihe des Rechenzentrum 41, Universität Münster (1979). [Google Scholar]
  26. H. Maurer and H.J. Pesch, Solution differentiability for nonlinear parametric control problems. SIAM J. Control Optim. 32 (1994) 1542–1554. [CrossRef] [MathSciNet] [Google Scholar]
  27. F. Mignot, Contrôle dans les inéquations variationnelles elliptiques. J. Funct. Anal. 22 (1976) 130–185. [CrossRef] [Google Scholar]
  28. L.S. Pontryagin, V.G. Boltyanskii, R.V. Gamkrelidze and E.F. Mishchenko, The mathematical theory of optimal processes. Translated from the Russian by K.N. Trirogoff; L.W. Neustadt Ed., Interscience Publishers John Wiley & Sons, Inc. New York-London (1962). [Google Scholar]
  29. S.M. Robinson, First order conditions for general nonlinear optimization. SIAM J. Appl. Math. 30 (1976) 597–607. [CrossRef] [MathSciNet] [Google Scholar]
  30. S.M. Robinson, Stability theorems for systems of inequalities, part II: Differentiable nonlinear systems. SIAM J. Numer. Anal. 13 (1976) 497–513. [CrossRef] [MathSciNet] [Google Scholar]
  31. S.M. Robinson, Strongly regular generalized equations. Math. Oper. Res. 5 (1980) 43–62. [CrossRef] [MathSciNet] [Google Scholar]
  32. J. Sokolowski, Sensitivity analysis of control constrained optimal control problems for distributed parameter systems. SIAM J. Control Optim. 25 (1987) 1542–1556. [CrossRef] [MathSciNet] [Google Scholar]
  33. J. Stoer and R. Bulirsch, Introduction to Numerical Analysis. Springer-Verlag, New York (1993). [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.