Free Access
Issue
ESAIM: COCV
Volume 15, Number 2, April-June 2009
Page(s) 403 - 425
DOI https://doi.org/10.1051/cocv:2008033
Published online 30 May 2008
  1. F. Alabau, Stabilisation frontière indirecte de systèmes faiblement couplés. C.R. Acad. Sci. Paris Série I 328 (1999) 1015–1020. [Google Scholar]
  2. F. Alabau, P. Cannarsa and V. Komornik, Indirect internal stabilization of weakly coupled evolution equations. J. Evol. Eq. 2 (2002) 127–150. [CrossRef] [MathSciNet] [Google Scholar]
  3. J. Baillieul and M. Levi, Rotational elastic dynamics. Physica D 27 (1987) 43–62. [CrossRef] [MathSciNet] [Google Scholar]
  4. S. Bianchini, B. Hanouzet and R. Natalini, Asymptotic behaviour of smooth solutions for partially dissipative hyperbolic systems with a convex entropy. Comm. Pure Appl. Math. 60 (2007) 1559–1622. [CrossRef] [MathSciNet] [Google Scholar]
  5. H. Brezis, Analyse fonctionnelle : théorie et applications. Masson, Paris (1983). [Google Scholar]
  6. N. Burq and G. Lebeau, Mesure de défaut de compacité, application au système de Lamé. Ann. Sci. École Norm. Sup. 34 (2001) 817–870. [Google Scholar]
  7. A. Chapelon and C.Z. Xu, Boundary control of a class of hyperbolic systems. Eur. J. Control 9 (2003) 589–604. [CrossRef] [Google Scholar]
  8. J.M. Coron, B. d'Andréa-Novel and G. Bastin, A Lyapunov approach to control irrigation canals modeled by Saint-Venant equations. European Control Conference ECC'99, Karlsruhe, September (1999). [Google Scholar]
  9. J.M. Coron, B. d'Andréa-Novel and G. Bastin, A strict Lyapunov function for boundary control of hyperbolic systems of conservation laws. IEEE Trans. Automat. Control 52 (2007) 2–11. [CrossRef] [MathSciNet] [Google Scholar]
  10. R.F. Curtain and H.J. Zwart, An introduction to infinite-dimensional linear systems theory. Springer-Verlag, New York (1995). [Google Scholar]
  11. B. d'Andréa-Novel, Commande non linéaire des robots. Hermès (1988). [Google Scholar]
  12. P. Freitas, Stability results for the wave equation with indefinite damping. J. Diff. Eq. 132 (1996) 338–353. [CrossRef] [MathSciNet] [Google Scholar]
  13. J.M. Greenberg and T.T. Li, The effect of boundary damping for the quasilinear wave equation. J. Diff. Eq. 52 (1984) 66–75. [CrossRef] [Google Scholar]
  14. C.D. Immanuel, C.F. Cordeiro, S.S. Sundaram, E.S. Meadows, T.J. Crowley and F.J. Doyle III, Modeling of particule size distribution in emulsion co-polymerization: comparaison with experimental data and parameter sensitivity studies. Comput. Chem. Eng. 26 (2002) 1133–1152. [NASA ADS] [CrossRef] [EDP Sciences] [MathSciNet] [PubMed] [Google Scholar]
  15. B. Kalitine, Sur la stabilité des ensembles compacts positivement invariants des systèmes dynamiques. RAIRO-Automatique 16 (1982) 275–286. [MathSciNet] [Google Scholar]
  16. L.V. Kantorovich and G.P. Akilov, Functional analysis in normed spaces. Pergamon Press, Oxford (1964). [Google Scholar]
  17. V. Komornik, Exact controllability and stabilization: the multiplier method, Research in Applied Mathematics. Series Editors: P.G. Ciarlet and J.L. Lions, Masson, Paris (1994). [Google Scholar]
  18. V. Komornik and E. Zuazua, A direct method for the boundary stabilization of the wave equation. J. Math. Pures Appl. 69 (1990) 33–54. [MathSciNet] [Google Scholar]
  19. J.P. LaSalle and S. Lefschetz, Stability by Liapunov's direct method with applications. Academic Press, New York (1961). [Google Scholar]
  20. P.D. Lax and R.S. Phillips, Local boundary conditions for dissipative symmetric linear differential operators. Comm. Pure Appl. Math. 13 (1960) 427–455. [CrossRef] [MathSciNet] [Google Scholar]
  21. T.-T. Li, Global classical solutions for quasilinear hyperbolic systems, Research in Applied Mathematics. John Wiley & Sons, New York (1994). [Google Scholar]
  22. A. Liapunov, Problème général de la stabilité du mouvement. Princeton University Press, Princeton, New Jersey (1947). [Google Scholar]
  23. J. Liéto, Génie chimique à l'usage des chimistes. Lavoisier, Paris (1998). [Google Scholar]
  24. Z.H. Luo, B.Z. Guo and O. Morgul, Stability and stabilization of infinite dimensional systems with applications. Springer, London (1999). [Google Scholar]
  25. Nasa Technical Memorandum, Progress Report No. 8, in Proceedings of the twenty-fourth seminar on space flight and guidance theory, NASA George G. Marshall space flight center, Huntsville, Alabama, June 3 (1966). [Google Scholar]
  26. R. Outbib and G. Sallet, Stabilizability of the angular velocity of a rigid body revisited. Systems Control Lett. 18 (1992) 93–98. [CrossRef] [MathSciNet] [Google Scholar]
  27. A. Pazy, Semigroups of Linear Operators and Applications to Partial Differential Equations. Springer-Verlag, New York (1983). [Google Scholar]
  28. F. Puel, G. Févotte and J.P. Klein, Simulation and analysis of industrial cristallization processes through multidimensional population balance equation. Part 1: A resolution algorithm based on the method of classes. Chem. Engrg. Sci. 58 (2003) 3715–3727. [CrossRef] [Google Scholar]
  29. D. Ramkrishna and A.W. Mahoney, Population balancemodeling. Promise for the future. Chem. Engrg. Sci. 57 (2002) 595–606. [CrossRef] [Google Scholar]
  30. B. Rao, Le taux optimal de décroissance de l'énergie dans l'équation de poutre de Rayleigh. C. R. Acad. Sci. Paris 325 (1997) 737–742. [Google Scholar]
  31. J. Rauch and M. Taylor, Exponential decay of solutions to hyperbolic equations in bounded domain. Indiana Univ. Math. J. 24 (1974) 79–86. [CrossRef] [MathSciNet] [Google Scholar]
  32. D.L. Russell, Controllability and stabilizability theory for linear partial differential equations: recent progress and open questions. SIAM Rev. 20 (1978) 639–739. [CrossRef] [MathSciNet] [Google Scholar]
  33. D. Serre, Solvability of hyperbolic IBVPS through filtering. Methods Appl. Anal. 12 (2005) 253–266. [MathSciNet] [Google Scholar]
  34. E. Sontag and H. Sussmann, Further comments on the stabilizability of the angular velocity of a rigid body. Systems Control Lett. 12 (1988) 213–217. [CrossRef] [Google Scholar]
  35. G. Szegö, On the application of Zubov's method of constructing Liapunov functions for nonlinear control systems. Transaction of ASME Journal of Basic Eng. Series D 85 (1963) 137–142. [Google Scholar]
  36. A. Tchousso, Étude de la stabilité asymptotique de quelques modèles de transfert de chaleur. Ph.D. thesis, University of Claude Bernard - Lyon 1, France (2004). [Google Scholar]
  37. A. Tchousso and C.Z. Xu, Exponential stability of symmetric hyperbolic systems using Lyapunov functionals, in Proceedings of the 10th IEEE International Conference on Methods and Models in Automation and Robotics, Miedzyzdroje, Poland (2004) 361–364. [Google Scholar]
  38. A.J. van der Schaft, Stabilization of Hamiltonian systems. Nonlinear Anal. Methods Appl. 10 (1986) 1021–1035. [CrossRef] [Google Scholar]
  39. C.Z. Xu and G. Sallet, Exponential stability and transfer functions of a heat exchanger network. Rapport de Recherche de l'INRIA 3823 (1999) 1–21. [Google Scholar]
  40. C.Z. Xu and G. Sallet, Exponential stability and transfer functions of processes governed by symmetric hyperbolic systems. ESAIM: COCV 7 (2002) 421–442. [CrossRef] [EDP Sciences] [Google Scholar]
  41. C.Z. Xu, J.P. Gauthier and I. Kupka, Exponential stability of the heat exchanger equation, in Proceedings of the European Control Conference, Groningen, The Netherlands (1993) 303–307. [Google Scholar]
  42. E. Zuazua, Exact controllability for semilinear wave equations in one space dimension. Ann. Inst. H. Poincaré Anal. Non Linéaire 10 (1993) 109–129. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.