Free Access
Issue |
ESAIM: COCV
Volume 15, Number 2, April-June 2009
|
|
---|---|---|
Page(s) | 377 - 402 | |
DOI | https://doi.org/10.1051/cocv:2008036 | |
Published online | 30 May 2008 |
- J.M. Ball, Convexity conditions and existence theorems in nonlinear elasticity. Arch. Rational Mech. Anal. 63 (1977) 337–403. [Google Scholar]
- J.M. Ball, Some open problems in elasticity, in Geometry, Mechanics and Dynamics, P. Newton, P. Holmes and A. Weinstein Eds., Springer-Verlag, New York (2002) 3–59. [Google Scholar]
- B. Bernardini and T.J. Pence, A multifield theory for the modeling of the macroscopic behavior of shape memory materials, in Advances in Multifield Theories for Continua with Substructure, G. Capriz and P.M. Mariano Eds., Birkhäuser, Boston (2004) 199–242. [Google Scholar]
- F. Bethuel, H. Brezis and J.M. Coron, Relaxed energies for harmonic maps, in Variational methods, H. Berestycki, J. Coron and I. Ekeland Eds., Birkhäuser, Basel (1990) 37–52. [Google Scholar]
- E. Binz, M. de Leon and D. Socolescu, Global dynamics of media with microstructure. Extracta Math. 14 (1999) 99–125. [MathSciNet] [Google Scholar]
- G. Capriz, Continua with latent microstructure. Arch. Rational Mech. Anal. 90 (1985) 43–56. [Google Scholar]
- G. Capriz, Continua with Microstructure. Springer-Verlag, Berlin (1989). [Google Scholar]
- G. Capriz, Smectic liquid crystals as continua with latent microstructure. Meccanica 30 (1994) 621–627. [CrossRef] [Google Scholar]
- G. Capriz and P. Biscari, Special solutions in a generalized theory of nematics. Rend. Mat. 14 (1994) 291–307. [Google Scholar]
- G. Capriz and P. Giovine, On microstructural inertia. Math. Models Methods Appl. Sci. 7 (1997) 211–216. [CrossRef] [MathSciNet] [Google Scholar]
- P. Ciarlet and J. Nečas, Injectivity and self-contact in nonlinear elasticity. Arch. Rational Mech. Anal. 97 (1987) 171–188. [Google Scholar]
- C. de Fabritiis and P.M. Mariano, Geometry of interactions in complex bodies. J. Geom. Phys. 54 (2005) 301–323. [CrossRef] [MathSciNet] [Google Scholar]
- P.-G. De Gennes and J. Prost, The Physics of Liquid Crystals. Oxford University Press, Oxford (1993). [Google Scholar]
- M. Deneau, F. Dunlop and C. Ogney, Ground states of frustrated Ising quasicrystals. J. Phys. A 26 (1993) 2791–2802. [CrossRef] [Google Scholar]
- A.R. Denton and J. Hafner, Thermodynamically stable one-component metallic quasicrystals. Europhys. Lett. 38 (1997) 189–194. [CrossRef] [Google Scholar]
- J.L. Ericksen, Theory of anisotropic fluids. Trans. Soc. Rheol. 4 (1960) 29–39. [CrossRef] [Google Scholar]
- J.L. Ericksen, Conservation laws for liquid crystals. Trans. Soc. Rheol. 5 (1961) 23–34. [CrossRef] [Google Scholar]
- J.L. Ericksen, Liquid crystals with variable degree of orientation. Arch. Rational Mech. Anal. 113 (1991) 97–120. [Google Scholar]
- J.L. Ericksen and C.A. Truesdell, Exact theory of stress and strain in rods and shells. Arch. Rational Mech. Anal. 1 (1958) 295–323. [CrossRef] [MathSciNet] [Google Scholar]
- M. Foss, W.J. Hrusa and V.J. Mizel, The Lavrentiev gap phenomenon in nonlinear elasticity. Arch. Rational Mech. Anal. 167 (2003) 337–365. [CrossRef] [Google Scholar]
- G. Francfort and A. Mielke, Existence results for a class of rate-independent material models with nonconvex elastic energies. J. Reine Angew. Math. 595 (2006) 55–91. [CrossRef] [MathSciNet] [Google Scholar]
- M. Frémond, Non-Smooth Thermomechanics. Springer-Verlag, Berlin (2000). [Google Scholar]
- M. Giaquinta and G. Modica, On sequences of maps with equibounded energies. Calc. Var. Partial Differ. Equ. 12 (2001) 213–222. [CrossRef] [MathSciNet] [Google Scholar]
- M. Giaquinta and D. Mucci, Maps into manifolds and currents: area and W, W, BV energies. CRM series, Scuola Normale Superiore, Pisa (2006). [Google Scholar]
- M. Giaquinta, G. Modica and J. Souček, Cartesian currents and variational problems for mappings into spheres. Ann. Scuola Normale Superiore 14 (1989) 393–485. [Google Scholar]
- M. Giaquinta, G. Modica and J. Souček, The Dirichlet energy of mappings with values into the sphere. Manuscripta Mat. 65 (1989) 489–507. [CrossRef] [Google Scholar]
- M. Giaquinta, G. Modica and J. Souček, Cartesian currents, weak diffeomorphisms and existence theorems in nonlinear elasticity. Arch. Rational Mech. Anal. 106 (1989) 97–159. Erratum and addendum. Arch. Rational Mech. Anal. 109 (1990) 385–392. [CrossRef] [MathSciNet] [Google Scholar]
- M. Giaquinta, G. Modica and J. Souček, The Dirichlet integral for mappings between manifolds: Cartesian currents and homology. Math. Ann. 294 (1992) 325–386. [CrossRef] [MathSciNet] [Google Scholar]
- M. Giaquinta, G. Modica and J. Souček, A weak approach to finite elasticity. Calc. Var. Partial Differ. Equ. 2 (1994) 65–100. [CrossRef] [Google Scholar]
- M. Giaquinta, G. Modica and J. Souček, Cartesian Currents in the Calculus of Variations, Vol. I. Springer-Verlag, Berlin (1998). [Google Scholar]
- M. Giaquinta, G. Modica and J. Souček, Cartesian Currents in the Calculus of Variations, Vol. II. Springer-Verlag, Berlin (1998). [Google Scholar]
- R. Hardt and F.H. Lin, A remark on H1 mappings. Manuscripta Math. 56 (1986) 1–10. [CrossRef] [MathSciNet] [Google Scholar]
- D.D. Holm, Euler-Poincaré dynamics of perfect complex fluids, in Geometry, Mechanics and Dynamics, P. Newton, P. Holmes and A. Weinstein Eds., Springer-Verlag, New York (2002) 113–167. [Google Scholar]
- C. Hu, R. Wang and D.-H. Ding, Symmetry groups, physical property tensors, elasticity and dislocations in quasicrystals. Rep. Prog. Phys. 63 (2000) 1–39. [CrossRef] [Google Scholar]
- H.-C. Jeong and P.J. Steinhardt, Finite-temperature elasticity phase transition in decagonal quasicrystals. Phys. Rev. B 48 (1993) 9394–9403. [Google Scholar]
- F.M. Leslie, Some constitutive equations for liquid crystals. Arch. Rational Mech. Anal. 28 (1968) 265–283. [Google Scholar]
- C.N. Likos, Effective interactions in soft condensed matter physics. Phys. Rep. 348 (2001) 267–439. [CrossRef] [Google Scholar]
- P.M. Mariano, Multifield theories in mechanics of solids. Adv. Appl. Mech. 38 (2002) 1–93. [CrossRef] [Google Scholar]
- P.M. Mariano, Migration of substructures in complex fluids. J. Phys. A 38 (2005) 6823–6839. [CrossRef] [MathSciNet] [Google Scholar]
- P.M. Mariano, Mechanics of quasi-periodic alloys. J. Nonlinear Sci. 16 (2006) 45–77. [CrossRef] [MathSciNet] [Google Scholar]
- P.M. Mariano, Cracks in complex bodies: covariance of tip balances. J. Nonlinear Sci. 18 (2008) 99–141. [CrossRef] [MathSciNet] [Google Scholar]
- P.M. Mariano and F.L. Stazi, Computational aspects of the mechanics of complex bodies. Arch. Comp. Meth. Eng. 12 (2005) 391–478. [CrossRef] [Google Scholar]
- J. Miekisz, Stable quasicrystals ground states. J. Stat. Phys. 88 (1997) 691–711. [CrossRef] [Google Scholar]
- R.D. Mindlin, Micro-structure in linear elasticity. Arch. Rational Mech. Anal. 16 (1964) 51–78. [MathSciNet] [Google Scholar]
- S. Müller, Q. Tang and B.S. Yan, On a new class of elastic deformations not allowing for cavitation. Ann. Inst. H. Poincaré Anal. Non Linéaire 11 (1994) 217–243. [Google Scholar]
- J.W. Nunziato and S.C. Cowin, A nonlinear theory of elastic materials with voids. Arch. Rational Mech. Anal. 72 (1979) 175–201. [MathSciNet] [Google Scholar]
- Y.G. Reshetnyak, General theorems on semicontinuity and on convergence with a functional. Sibir. Math. 8 (1967) 801–816. [CrossRef] [Google Scholar]
- Y.G. Reshetnyak, Weak convergence of completely additive vector functions on a set. Sibir. Math. 9 (1968) 1039–1045. [Google Scholar]
- Y.G. Reshetnyak, Space Mappings with Bounded Distorsion, Translations of Mathathematical Monographs 73. American Mathematical Society, Providence (1989). [Google Scholar]
- E.K.H. Salje, Phase transitions in ferroelastic and co-elastic crystals. Cambridge University Press, Cambridge (1993). [Google Scholar]
- R. Segev, A geometrical framework for the statics of materials with microstructure. Mat. Models Methods Appl. Sci. 4 (1994) 871–897. [CrossRef] [Google Scholar]
- M. Šilhavý, The Mechanics and Thermodynamics of Continuous Media. Springer-Verlag, Berlin (1997). [Google Scholar]
- J.J. Slawianowski, Quantization of affine bodies. Theory and applications in mechanics of structured media, in Material substructures in complex bodies: from atomic level to continuum, G. Capriz and P.M. Mariano Eds., Elsevier (2006) 80–162. [Google Scholar]
- A.P. Tsai, J.Q. Guo, E. Abe, H. Takakura and T.J. Sato, Alloys – A stable binary quasicrystals. Nature 408 (2000) 537–538. [CrossRef] [Google Scholar]
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.