Free Access
Issue
ESAIM: COCV
Volume 15, Number 2, April-June 2009
Page(s) 295 - 321
DOI https://doi.org/10.1051/cocv:2008026
Published online 28 March 2008
  1. R. Alicandro and C. Leone, 3D-2D asymptotic analysis for micromagnetic thin films. ESAIM: COCV 6 (2001) 489–498. [CrossRef] [EDP Sciences] [Google Scholar]
  2. R. Alicandro, A. Corbo Esposito and C. Leone, Relaxation in BV of functionals defined on Sobolev functions with values into the unit sphere. J. Convex Anal. 14 (2007) 69–98. [MathSciNet] [Google Scholar]
  3. L. Ambrosio, N. Fusco and D. Pallara, Functions of bounded variation and free discontinuity problems, Oxford Math. Monographs. Oxford (2000). [Google Scholar]
  4. F. Bethuel, The approximation problem for Sobolev maps between manifolds. Acta Math. 167 (1992) 153–206. [CrossRef] [MathSciNet] [Google Scholar]
  5. B. Dacorogna, I. Fonseca, J. Malý and K. Trivisa, Manifold constrained variational problems. Calc. Var. 9 (1999) 185–206. [Google Scholar]
  6. F. Demengel and R. Hadiji, Relaxed energies for functionals on Formula . Nonlinear Anal. 19 (1992) 625–641. [CrossRef] [MathSciNet] [Google Scholar]
  7. H. Federer, Geometric measure theory, Grundlehren math. Wissen. 153. Springer, Berlin (1969). [Google Scholar]
  8. I. Fonseca and S. Müller, Relaxation of quasiconvex functionals in Formula for integrands Formula . Arch. Rat. Mech. Anal. 123 (1993) 1–49. [Google Scholar]
  9. I. Fonseca and P. Rybka, Relaxation of multiple integrals in the space Formula . Proc. Royal Soc. Edin. 121A (1992) 321–348. [Google Scholar]
  10. E. Gagliardo, Caratterizzazione delle tracce sulla frontiera relative ad alcune classi di funzioni in n variabili. Rend. Sem. Mat. Univ. Padova 27 (1957) 284–305. [MathSciNet] [Google Scholar]
  11. M. Giaquinta and D. Mucci, The BV-energy of maps into a manifold: relaxation and density results. Ann. Scuola Norm. Sup. Pisa Cl. Sci. (5) 5 (2006) 483–548. [Google Scholar]
  12. M. Giaquinta and D. Mucci, Maps into manifolds and currents: area and Formula -, Formula -, BV-energies. Edizioni della Normale, C.R.M. Series, Sc. Norm. Sup. Pisa (2006). [Google Scholar]
  13. M. Giaquinta and D. Mucci, Erratum and addendum to: The BV-energy of maps into a manifold: relaxation and density results. Ann. Scuola Norm. Sup. Pisa Cl. Sci. (5) 6 (2007) 185–194. [Google Scholar]
  14. M. Giaquinta and D. Mucci, Relaxation results for a class of functionals with linear growth defined on manifold constrained mappings. Journal of Convex Analysis 15 (2008) (online). [Google Scholar]
  15. M. Giaquinta, G. Modica and J. Souček, Variational problems for maps of bounded variations with values in Formula . Calc. Var. 1 (1993) 87–121. [CrossRef] [MathSciNet] [Google Scholar]
  16. M. Giaquinta, G. Modica and J. Souček, Cartesian currents in the calculus of variations, I, II. Ergebnisse Math. Grenzgebiete (III Ser.) 37, 38. Springer, Berlin (1998). [Google Scholar]
  17. P.M. Mariano and G. Modica, Ground states in complex bodies. ESAIM: COCV (to appear). [Google Scholar]
  18. Y.G. Reshetnyak, Weak convergence of completely additive vector functions on a set. Siberian Math. J. 9 (1968) 1039–1045. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.