Free Access
Volume 15, Number 3, July-September 2009
Page(s) 626 - 652
Published online 19 July 2008
  1. R.A. Adams, Sobolev Spaces, Pure and Applied Mathematics 65. Academic Press, New York-London (1975). [Google Scholar]
  2. A. Battermann and M. Heinkenschloss, Preconditioners for Karush-Kuhn-Tucker matrices arising in the optimal control of distributed systems, in Control and estimation of distributed parameter systems (Vorau, 1996), Internat. Ser. Numer. Math. 126 (1998) 15–32. [Google Scholar]
  3. A. Battermann and E.W. Sachs, Block preconditioners for KKT systems in PDE-governed optimal control problems, in Fast solution of discretized optimization problems (Berlin, 2000), Internat. Ser. Numer. Math. 138 (2001) 1–18. [Google Scholar]
  4. G. Biros and O. Ghattas, Parallel Lagrange-Newton-Krylov-Schur methods for PDE-constrained optimization. I. The Krylov-Schur solver. SIAM J. Sci. Comput. 27 (2005) 687–713. [CrossRef] [MathSciNet] [Google Scholar]
  5. R. Dautray and J.-L. Lions, Evolution Problems I, Mathematical Analysis and Numerical Methods for Science and Technology 5. Springer-Verlag, Berlin (1992). [Google Scholar]
  6. L.C. Evans, Partial Differential Equations, Graduate Studies in Mathematics 19. American Mathematical Society, Providence, Rhode Island (1998). [Google Scholar]
  7. C. Geiger and C. Kanzow, Theorie und Numerik restringierter Optimierungsaufgaben. Springer-Verlag, Berlin (2002). [Google Scholar]
  8. W. Hackbusch, Optimal Formula error estimates for a parabolic Galerkin method. SIAM J. Numer. Anal. 18 (1981) 681–692. [CrossRef] [MathSciNet] [Google Scholar]
  9. M. Hintermüller, Mesh-independence and fast local convergence of a primal-dual active-set method for mixed control-state constrained elliptic control problems. ANZIAM Journal 49 (2007) 1–38. [CrossRef] [MathSciNet] [Google Scholar]
  10. M. Hintermüller and M. Hinze, A SQP-semismooth Newton-type algorithm applied to control of the instationary Navier-Stokes system subject to control constraints. SIAM J. Opt. 16 (2006) 1177–1200. [CrossRef] [Google Scholar]
  11. M. Hintermüller and M. Ulbrich, A mesh-independence result for semismooth Newton methods. Math. Program. Ser. B 101 (2004) 151–184. [Google Scholar]
  12. M. Hintermüller, K. Ito and K. Kunisch, The primal-dual active set strategy as a semi-smooth Newton method. SIAM J. Opt. 13 (2003) 865–888. [CrossRef] [MathSciNet] [Google Scholar]
  13. M. Hintermüller, S. Volkwein and F. Diwoky, Fast solution techniques in constrained optimal boundary control of the semilinear heat equation. Internat. Ser. Numer. Math. 155 (2007) 119–147. [CrossRef] [Google Scholar]
  14. J.-L. Lions, Optimal control of systems governed by partial differential equations. Springer-Verlag, Berlin (1971). [Google Scholar]
  15. K. Malanowski, Convergence of approximations versus regularity of solutions for convex, control-constrained optimal control problems. Appl. Math. Optim. 8 (1981) 69–95. [CrossRef] [Google Scholar]
  16. J.M. Ortega and W.C. Rheinboldt, Iterative Solution of Nonlinear Equations in several Variables, Computer Science and Applied Mathematics. Academic Press, New York (1970). [Google Scholar]
  17. K. Rektorys, The Method of Discretization in Time and Partial Differential Equations, Mathematics and Applications 4. D. Reichel Publishing Company, Boston-Dordrecht-London (1982). [Google Scholar]
  18. R. Temam, Navier-Stokes Equations, Studies in Mathematics and its Applications. North-Holland, Amsterdam (1979). [Google Scholar]
  19. H. Triebel, Interpolation Theory, Function Spaces, Differential Operators. North-Holland Publishing Company, Amsterdam (1978). [Google Scholar]
  20. F. Tröltzsch, Regular Lagrange multipliers for control problems with mixed pointwise control-state constraints. SIAM J. Opt. 15 (2005) 616–634. [Google Scholar]
  21. F. Tröltzsch, Optimale Steuerung partieller Differentialgleichungen. Vieweg Verlag, Wiesbaden (2005). [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.