Free Access
Issue
ESAIM: COCV
Volume 15, Number 3, July-September 2009
Page(s) 509 - 524
DOI https://doi.org/10.1051/cocv:2008034
Published online 30 May 2008
  1. L. Ambrosio, Minimizing movements. Rend. Accad. Naz. Sci. XL Mem. Mat. Appl. 19 (1995) 191–246. [MathSciNet] [Google Scholar]
  2. L. Ambrosio, N. Gigli and G. Savarè, Gradient flows in metric spaces and in the spaces of probability measures, Lectures in Mathematics. ETH Zurich, Birkhäuser (2005). [Google Scholar]
  3. G. Bouchitté, C. Jimenez and M. Rajesh, Asymptotique d'un problème de positionnement optimal. C. R. Acad. Sci. Paris Ser. I 335 (2002) 1–6. [Google Scholar]
  4. A. Brancolini and G. Buttazzo, Optimal networks for mass transportation problems. ESAIM: COCV 11 (2005) 88–101. [CrossRef] [EDP Sciences] [Google Scholar]
  5. G. Buttazzo and E. Stepanov, Optimal transportation networks as free Dirichlet regions for the Monge-Kantorovich problem. Ann. Scuola Norm. Sup. Cl. Sci. II (2003) 631–678. [Google Scholar]
  6. G. Buttazzo and E. Stepanov, Minimization problems for average distance functionals, in Calculus of Variations: Topics from the Mathematical Heritage of Ennio De Giorgi, D. Pallara Ed., Quaderni di Matematica 14, Seconda Universita di Napoli (2004) 47–83. [Google Scholar]
  7. G. Buttazzo, E. Oudet and E. Stepanov, Optimal transportation problems with free Dirichlet regions, Progress in Nonlinear Differential Equations and their Applications 51. Birkhäuser (2002) 41–65. [Google Scholar]
  8. G. Dal Maso, An introduction to Γ-convergence. Birkhauser, Basel (1992). [Google Scholar]
  9. L. Fejes Töth, Lagerungen in der Ebene auf der Kugel und im Raum, Die Grundlehren der Math. Wiss. 65. Springer-Verlag, Berlin (1953). [Google Scholar]
  10. F. Morgan and R. Bolton, Hexagonal economic regions solve the location problem. Amer. Math. Monthly 109 (2002) 165–172. [CrossRef] [MathSciNet] [Google Scholar]
  11. S.J.N. Mosconi and P. Tilli, Γ-convergence for the irrigation problem. J. Convex Anal. 12 (2005) 145–158. [MathSciNet] [Google Scholar]
  12. E. Paolini and E. Stepanov, Qualitative properties of maximum distance minimizers and average distance minimizers in Formula . J. Math. Sciences (N.Y.) 122 (2004) 105–122. [Google Scholar]
  13. F. Santambrogio and P. Tilli, Blow-up of optimal sets in the irrigation probem. J. Geom. Anal. 15 (2005) 343–362. [CrossRef] [MathSciNet] [Google Scholar]
  14. E. Stepanov, Partial geometric regularity of some optimal connected transportation networks. J. Math. Sciences (N.Y.) 132 (2006) 522–552. [Google Scholar]
  15. A. Suzuki and Z. Drezner, The p-center location. Location Sci. 4 (1996) 69–82. [CrossRef] [Google Scholar]
  16. A. Suzuki and A. Okabe, Using Voronoi diagrams, in Facility location: a survey of applications and methods, Z. Drezner Ed., Springer Series in Operations Research, Springer Verlag (1995) 103–118. [Google Scholar]
  17. T. Suzuki, Y. Asami and A. Okabe, Sequential location-allocation of public facilities in one- and two-dimensional space: comparison of several policies. Math. Program. Ser. B 52 (1991) 125–146. [CrossRef] [Google Scholar]
  18. http://cvgmt.sns.it/papers/brabutsan06/. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.