Free Access
Issue
ESAIM: COCV
Volume 15, Number 3, July-September 2009
Page(s) 676 - 711
DOI https://doi.org/10.1051/cocv:2008047
Published online 19 July 2008
  1. F. Alouges and A. Soyeur, On global weak solutions for Landau Lifschitz equations: existence and nonuniqueness. Nonlinear Anal. Theory Meth. Appl. 18 (1992) 1071–1084. [CrossRef] [Google Scholar]
  2. M. Bauer, J. Fassbender, B. Hillebrands and R.L. Stamps, Switching behavior of a Stoner particle beyond the relaxation time limit. Phys. Rev. B 61 (2000) 3410–3416. [CrossRef] [Google Scholar]
  3. G. Bertotti and I. Mayergoyz, The Science of Hysteresis. Academic Press (2006). [Google Scholar]
  4. W.F. Brown, Micromagnetics. Interscience Publishers (1963). [Google Scholar]
  5. G. Carbou and P. Fabrie, Regular solutions for Landau-Lifschitz equation in a bounded domain. Diff. Integral Eqns. 14 (2001) 219–229. [Google Scholar]
  6. G. Carbou, S. Labbé and E. Trélat, Control of travelling walls in a ferromagnetic nanowire. Discrete Contin. Dyn. Syst. Ser. S 1 (2008) 51–59. [MathSciNet] [Google Scholar]
  7. K.-C. Chang, W.Y. Ding and R. Ye, Finite-time blow-up of the heat flow of harmonic maps from surfaces. J. Differ. Geom. 36 (1992) 507–515. [Google Scholar]
  8. J.-M. Coron, Nonuniqueness for the heat flow of harmonic maps. Ann. Inst. H. Poincaré Anal. Non Linéaire 7 (1992) 335–344. [Google Scholar]
  9. J.-M. Coron and J.-M. Ghidaglia, Explosion en temps fini pour le flot des applications harmoniques. C. R. Acad. Sci. Paris Sér. I Math. 308 (1989) 339–344. [Google Scholar]
  10. A. DeSimone, Hysteresis and imperfection sensitivity in small ferromagnetic particles. Meccanica 30 (1995) 591–603. [CrossRef] [MathSciNet] [Google Scholar]
  11. A. Freire, Uniqueness for the harmonic map flow in two dimensions. Calc. Var. Partial Differential Equations 3 (1995) 95–105. [CrossRef] [MathSciNet] [Google Scholar]
  12. A. Hubert and R. Schäfer, Magnetic Domains: The Analysis of Magnetic Microstructures. Springer (1998). [Google Scholar]
  13. J. Jost, Ein Existenzbeweis für harmonische Abbildungen, die ein Dirichletproblem lösen, mittels der Methode des Wärmeflusses. Manuscripta Math. 34 (1981) 17–25. [CrossRef] [MathSciNet] [Google Scholar]
  14. R. Kikuchi, On the minimum of magnetization reversal time. J. Appl. Phys. 27 (1956) 1352–1357. [NASA ADS] [CrossRef] [MathSciNet] [PubMed] [Google Scholar]
  15. S. Labbé, Simulation numérique du comportement hyperfréquence des matériaux ferromagnétiques. Ph.D. thesis, Université Paris XIII, France (1998). [Google Scholar]
  16. J.C. Mallinson, Damped gyromagnetic switching. IEEE Trans. Magn. 36 (2000) 1976–1981. [CrossRef] [Google Scholar]
  17. J.-C. Mitteau, Sur les applications harmoniques. J. Differ. Geom. 9 (1974) 41–54. [Google Scholar]
  18. A. Visintin, On Landau-Lifschitz equations for ferromagnetism. Japan J. Appl. Math. 2 (1985) 69–84. [CrossRef] [MathSciNet] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.